Intelligent material is a new type of smart multifunctional material that can spontaneously sense the change of external environment and judge, handle and properly make the response. At the same time, it's also the fourth generation material after natural material, synthetic polymer and artificial design material, triggering a new revolution in material science. Starting from the historical origin of shape memory composite, this paper details the latest development of shape memory alloy and shape memory polymer from aspects of shape memory mechanism and engineering application. The discussions of recent technological problems are also included, such as the weak biocompatibility, small deformation, slow actuation velocity and brief fatigue life of SMA as well as the complex manufacture of 3D printing, small strength and stiffness of SMP, etc. The possible near development directions are finally forecasted.
YU X L , ZHOU J . Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016, 44 (7): 119- 128.
doi: 10.11868/j.issn.1001-4381.2016.07.020
SHEN X L , ZHU G M , YANG P F . Biomedical shape memory polymers[J]. Journal of Materials Engineering, 2017, 45 (7): 111- 117.
doi: 10.11868/j.issn.1001-4381.2015.001230
7
YAKACKI C M , SHANDAS R , SAFRANSKI D , et al. Strong, tailored, biocompatible shape-memory polymer networks[J]. Advanced Functional Materials, 2008, 18 (16): 2428- 2435.
doi: 10.1002/adfm.v18:16
8
LENDLEIN A , LANGER R . Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296 (5573): 1673- 1676.
doi: 10.1126/science.1066102
9
LAN X , LIU Y , LV H , et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials and Structures, 2009, 18 (2): 1560- 1574.
10
LASCHI C , CIANCHETTI M , MAZZOLAI B , et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26 (7): 709- 727.
doi: 10.1163/156855312X626343
11
NAJEM J , SARLES S A , AKLE B , et al. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators[J]. Smart Materials and Structures, 2012, 21 (9): 094026.
doi: 10.1088/0964-1726/21/9/094026
12
CASTELLANO M G , INDIRLI M , MARTELLI A . Progress of application, research and development and design guidelines for shape memory alloy devices for cultural heritage structures in Italy[J]. Proceedings of SPIE——The International Society for Optical Engineering, 2001, 4330 (1): 250- 261.
LI Y F , CHEN C , ZENG X G . Unified constitutive model and numerical implementation of NiTi alloy involving phase transformation and plasticity[J]. Journal of Aeronautical Materials, 2018, 38 (1): 26- 32.
doi: 10.11868/j.issn.1005-5053.2017.000019
14
ÖLANDER A . An electrochemical investigation of solid cadmium-gold alloys[J]. Journal of the American Chemical Society, 1932, 54 (10): 3819- 3833.
doi: 10.1021/ja01349a004
15
KAEUFER H, RAUTENBERG L, PAHL J. Process for the manufacture of articles of high mechanical strength from thermoplastic synthetic resins[P]. US41129182A.
16
BUEHLER W J , GILFRICH J V , WILEY R C . Effect of low-temperature phase changes on the mechanical properties of Alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34 (5): 1475- 1477.
doi: 10.1063/1.1729603
17
JANI J M , LEARY M , SUBIC A , et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56 (14): 1078- 1113.
18
KAUFFMAN G , MAYO I . The story of Nitinol:the serendipitous discovery of the memory metal and its applications[J]. The Chemical Educator, 1997, 2 (2): 1- 21.
WANG N , YAN S J , PENG S K , et al. Research progress on 3D printed graphene materials synthesis technology and its application in energy storage field[J]. Journal of Materials Engineering, 2017, 45 (12): 112- 125.
doi: 10.11868/j.issn.1001-4381.2016.001102
LI D C , HE J K , TIAN X Y , et al. Additive manufacturing:integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49 (6): 129- 135.
WANG Y Q , SHEN J X , WU H Q . Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36 (4): 89- 98.
YANG P H , GAO X X , LIANG J , et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45 (9): 13- 21.
doi: 10.11868/j.issn.1001-4381.2016.001226
24
MA J , FRANCO B , TAPIA G , et al. Spatial control of functional response in 4D-printed active metallic structures[J]. Scientific Reports, 2017, 7, 46707.
doi: 10.1038/srep46707
25
HABERLAND C , ELAHINIA M , WALKER J M , et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Materials and Structures, 2014, 23 (10): e104002.
doi: 10.1088/0964-1726/23/10/104002
26
CARRENO-MORELLI E , MARTINERIE S , BIDAUX J E . Three-dimensional printing of shape memory alloys[J]. Materials Science Forum, 2007, 534/536, 477- 480.
doi: 10.4028/www.scientific.net/MSF.534-536
27
HEHR A , DAPINO M J . Dynamics of ultrasonic additive manufacturing[J]. Ultrasonics, 2017, 73, 49- 66.
doi: 10.1016/j.ultras.2016.08.009
LIU H T , SUN G A , WANG Y D , et al. Shock-induced transformation behavior in NiTi shape memory alloy[J]. Acta Physica Sinica, 2013, 62 (1): 709- 712.
LONG D W. Study of corrosion and high temperature friction performance of laser cladding on aluminum bronze[D]. Lanzhou: Lanzhou University of Technology, 2010.
XU P. Research on microstructure and properties of Fel7Mn5Sil0Cr5Ni shape memory alloy coating fabricated by laser cladding[D]. Dalian: Dalian Maritime University, 2015.
31
TOKER S M , GERSTEIN G , MAIER H J , et al. Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid[J]. Journal of Materials Science, 2018, 53 (2): 948- 958.
doi: 10.1007/s10853-017-1586-4
32
TOKER S M , CANADINC D , MAIER H J , et al. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys:Geometry and body location dependency[J]. Materials Science and Engineering:C, 2014, 36 (1): 118- 129.
33
SUN X T , KANG Z X , ZHANG X L , et al. A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution[J]. Electrochimica Acta, 2011, 56 (18): 6389- 6396.
doi: 10.1016/j.electacta.2011.05.019
34
SHABALOVSKAYA S A , TIAN H , ANDEREGG J W , et al. The influence of surface oxides on the distribution and release of nickel from Nitinol wires[J]. Biomaterials, 2009, 30 (4): 468- 477.
doi: 10.1016/j.biomaterials.2008.10.014
35
LI H F , QIU K J , ZHOU F Y , et al. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application[J]. Scientific Reports, 2016, 6, 37475.
doi: 10.1038/srep37475
36
LUO P , WANG S N , ZHAO T T , et al. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy[J]. Rare Metals, 2013, 32 (2): 113- 121.
doi: 10.1007/s12598-013-0041-1
37
TEH Y H , FEATHERSTONE R . An architecture for fast and accurate control of shape memory alloy actuators[J]. International Journal of Robotics Research, 2008, 27 (5): 595- 611.
doi: 10.1177/0278364908090951
38
VELÁZQUEZ R , PISSALOUX E E . Modelling and temperature control of shape memory alloys with fast electrical heating[J]. International Journal of Mechanics & Control, 2012, 13 (2): 3- 10.
39
BARBARINO S , SAAVEDRA FLORES E L , AJAJ R M , et al. A review on shape memory alloys with applications to morphing aircraft[J]. Smart Materials and Structures, 2014, 23 (6): 063001.
doi: 10.1088/0964-1726/23/6/063001
40
SONG S H , LEE J Y , RODRIGUE H , et al. 35Hz shape memory alloy actuator with bending-twisting mode[J]. Scientific Reports, 2016, 6, 21118.
doi: 10.1038/srep21118
41
SCIRÈ M G , DRAGONI E . Functional fatigue of shape memory wires under constant-stress and constant-strain loading conditions[J]. Procedia Engineering, 2011, 10 (7): 3692- 3707.
42
SCIRÈ MAMMANO G , DRAGONI E . Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints[J]. Frattura ed Integrità Strutturale, 2012, 23 (23): 25- 33.
43
MATHEUS T C U , MENEZES W M M , RIGO O D , et al. The influence of carbon content on cyclic fatigue of NiTi SMA wires[J]. International Endodontic Journal, 2011, 44 (6): 567- 573.
doi: 10.1111/iej.2011.44.issue-6
44
TAKEDA K , MATSUI R , TOBUSHI H , et al. Enhancement of bending fatigue life in TiNi shape-memory alloy tape by nitrogen ion implantation[J]. Archives of Mechanics, 2015, 67 (4): 293- 310.
45
TANAKA Y , HIMURO Y , KAINUMA R , et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity[J]. Science, 2010, 327 (5972): 1488- 1490.
doi: 10.1126/science.1183169
46
WEN Y H , PENG H B , RAABE D , et al. Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries[J]. Nature Communications, 2014, 5, 4964.
doi: 10.1038/ncomms5964
47
KUMBHAR S B , CHAVAN S P , GAWADE S S . Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite[J]. Mechanical Systems and Signal Processing, 2018, 100, 208- 223.
doi: 10.1016/j.ymssp.2017.07.027
48
GHAFOORI E , HOSSEINI E , LEINENBACH C , et al. Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening[J]. Materials & Design, 2017, 133, 349- 362.
49
BONNOT E , ROMERO R , MAÑOSA L , et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J]. Physical Review Letters, 2008, 100 (12): 125901.
doi: 10.1103/PhysRevLett.100.125901
50
SCHMIDT M , SCHVTZE A , SEELECKE S . Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes[J]. International Journal of Refrigeration, 2015, 54, 88- 97.
doi: 10.1016/j.ijrefrig.2015.03.001
51
CUI J , WU Y , MUEHLBAUER J , et al. Demonstration of high efficiency elastocaloric cooling with large Delta T using NiTi wires[J]. Applied Physics Letters, 2012, 101 (7): 0739047.
52
MOYA X , KAR-NARAYAN S , MATHUR N D . Caloric materials near ferroic phase transitions[J]. Nature Materials, 2014, 13 (5): 439- 450.
doi: 10.1038/nmat3951
53
YUAN G , BAI Y , JIA Z , et al. Enhancement of interfacial bonding strength of SMA smart composites by using mechanical indented method[J]. Composites Part B:Engineering, 2016, 106, 99- 106.
doi: 10.1016/j.compositesb.2016.08.033
54
WANG W , RODRIGUE H , AHN S H . Deployable soft composite structures[J]. Scientific Reports, 2016, 6, 20869.
doi: 10.1038/srep20869
55
BRAILOVSKI V , TERRIAULT P , GEORGES T , et al. SMA actuators for morphing wings[J]. Physics Procedia, 2010, 10 (12): 197- 203.
56
DONG Y , BOMING Z , JUN L . A changeable aerofoil actuated by shape memory alloy springs[J]. Materials Science and Engineering:A, 2008, 485 (1): 243- 250.
MENG X L , CAI W . Development of TiNi-based shape memory materials and their applications[J]. Journal of Rare Metals Letters, 2011, 30 (9): 13- 20.
58
KIM Y , CHENG S S , DIAKITE M , et al. Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot[J]. Journal of IEEE Transactions on Robotics, 2017, 33 (6): 1386- 1397.
doi: 10.1109/TRO.2017.2719035
59
STRAUß S , DUDZIAK S , HAGEMANN R , et al. Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress[J]. PLoS ONE, 2012, 7 (12): e51264.
doi: 10.1371/journal.pone.0051264
60
JIN H , DONG E , XU M , et al. Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots[J]. Smart Material Structures, 2016, 25 (8): 85026.
doi: 10.1088/0964-1726/25/8/085026
61
SEOK S , ONAL C D , CHO K J , et al. Meshworm:a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18 (5): 1485- 1497.
doi: 10.1109/TMECH.2012.2204070
62
BARTLETT M D , KAZEM N , POWELL-PALM M J , et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (9): 2143- 2148.
doi: 10.1073/pnas.1616377114
63
LOH C S, YUKOI H, ARAI T. New shape memory alloy actor: design and application in the prosthetic hand[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology. Japan: University of Tokyo, 2005.
64
GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[C]//14th Annual Conference on Towards Autonomous Robotic Systems(TAROS). Berlin: Springer-Verlag, 2014.
65
KIM H , SONG S , AHN S . A turtle-like swimming robot using a smart soft composite (SSC) structure[J]. Smart Materials Structures, 2013, 22 (1): 014007.
doi: 10.1088/0964-1726/22/1/014007
66
LI Y , RIOS O , KEUM J K , et al. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds[J]. ACS Applied Materials and Interfaces, 2016, 8 (24): 15750- 15757.
doi: 10.1021/acsami.6b04374
67
EBARA M . Shape-memory surfaces for cell mechanobiology[J]. Science and Technology of Advanced Materials, 2015, 16 (1): 14804.
doi: 10.1088/1468-6996/16/1/014804
68
查理斯贝. 原子辐射与聚合物[M]. 上海: 上海科学技术出版社, 1963.
68
Charlesby . Atomic radiation and polymer[M]. Shanghai: Shanghai Science and Technology Press, 1963.
69
OTA S . Current status of irradiated heat-shrinkable tubing in Japan[J]. Radiation Physics and Chemistry, 1981, 18 (1): 81- 87.
YU M X , ZHOU X . Performance of shape memory materials made of solution polymerized polyurethane[J]. Journal of Tsinghua University(Science and Technology), 2002, 42 (5): 607- 610.
71
CHOI J , KWON O C , JO W , et al. 4D printing technology:a review[J]. 3D Printing and Additive Manufacturing, 2015, 2 (4): 159- 167.
doi: 10.1089/3dp.2015.0039
72
DING Z , YUAN C , PENG X , et al. Direct 4D printing via active composite materials[J]. Science Advances, 2017, 3 (4): e1602890.
doi: 10.1126/sciadv.1602890
73
HUANG L , JIANG R , WU J , et al. Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Materials, 2017, 29 (7): e1605390.
doi: 10.1002/adma.201605390
74
GE Q , QI H J , DUNN M L . Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103 (13): e131901.
doi: 10.1063/1.4819837
75
FELTON S M , TOLLEY M T , SHIN B , et al. Self-folding with shape memory composites[J]. Soft Matter, 2013, 9 (32): 7688- 7694.
doi: 10.1039/c3sm51003d
76
SHAFFER S , YANG K , VARGAS J , et al. On reducing anisotropy in 3D printed polymers via ionizing radiation[J]. Polymer (United Kingdom), 2014, 55 (23): 5969- 5979.
77
WANG J , SUN L , ZOU M , et al. Bioinspired shape-memory graphene film with tunable wettability[J]. Science Advances, 2017, 3 (6): e1700004.
doi: 10.1126/sciadv.1700004
78
CHEN H , LI Y , LIU Y , et al. Highly pH-sensitive polyurethane exhibiting shape memory and drug release[J]. Polymer Chemistry, 2014, 5 (17): 5168- 5174.
doi: 10.1039/C4PY00474D
79
SHEN Q , TRABIA S , STALBAUM T , et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation[J]. Scientific Reports, 2016, 6, e24462.
doi: 10.1038/srep24462
80
LI P , HAN Y , WANG W , et al. Novel programmable shape memory polystyrene film:a thermally induced beam-power splitter[J]. Scientific Reports, 2017, 7, e44333.
doi: 10.1038/srep44333
81
XU H , YU C , WANG S , et al. Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23 (26): 3299- 3306.
doi: 10.1002/adfm.v23.26
82
LU H , LIU Y , GOU J , et al. Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite[J]. Applied Physics Letters, 2010, 96 (8): e084102.
83
RODRIGUEZ E D , LUO X , MATHER P T . Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH)[J]. ACS Applied Materials & Interfaces, 2011, 3 (2): 152- 161.
84
WEI H , YAO Y , LIU Y , et al. A dual-functional polymeric system combining shape memory with self-healing properties[J]. Composites Part B:Engineering, 2015, 83, 7- 13.
doi: 10.1016/j.compositesb.2015.08.019
85
LU H , YU K , SUN S , et al. Mechanical and shape-memory behavior of shape-memory polymer composites with hybrid fillers[J]. Polymer International, 2010, 59 (6): 766- 771.
86
RODRIGUEZ J N , ZHU C , DUOSS E B , et al. Shape-morphing composites with designed micro-architectures[J]. Scientific Reports, 2016, 6, 27933.
doi: 10.1038/srep27933
87
MOHR R , KRATZ K , WEIGEL T , et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (10): 3540- 3545.
doi: 10.1073/pnas.0600079103
88
LIN L , ZHANG L , GUO Y . Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA[J]. Materials Research Express, 2018, 5 (1): 015702.
doi: 10.1088/2053-1591/aaa04a
89
FAN J , LI G . High enthalpy storage thermoset network with giant stress and energy output in rubbery state[J]. Nature Communications, 2018, 9 (1): 642.
doi: 10.1038/s41467-018-03094-2
LIU L W , ZHAO W , LAN X , et al. Soft intelligent material and its applications in aerospace[J]. Journal of Harbin Institute of Technology, 2016, (5): 1- 17.
doi: 10.11918/j.issn.0367-6234.2016.05.001
SUN J. Investigation on morphing wing structures based on shape memory polymer composite (SMPC) skins and active honeycomb structures[D]. Harbin: Harbin Institute of Technology, 2015.
CHEN Q , BAI P , YIN W L , et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Journal of Acta Aerodynamica Sinica, 2013, (1): 40- 46.
93
LIN J , KNOLL C , WILLEY C . Shape memory rigidizable inflatable (RI) structures for large space systems applications[M]. Newport: American Institute of Aeronautics and Astronautics, 2006.
94
CADOGAN D , SCHEIR C . Expandable habitat technology demonstration for lunar and antarctic applications[J]. SAE Technical Papers, 2008,
95
RODRIGUEZ J N , CLUBB F J , WILSON T S , et al. In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model[J]. Journal of Biomedical Materials Research-Part A, 2014, 102 (5): 1231- 1242.
doi: 10.1002/jbm.a.34782
96
ZHAO W , LIU L , LAN X , et al. Adaptive repair device concept with shape memory polymer[J]. Smart Materials and Structures, 2017, 26 (2): 025027.
doi: 10.1088/1361-665X/aa5595
97
SMALL W , WILSON T , BENETT W , et al. Laser-activated shape memory polymer intravascular thrombectomy device[J]. Optics Express, 2005, 13 (20): 8204- 8213.
doi: 10.1364/OPEX.13.008204
98
XU H , YU C , WANG S , et al. Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23 (26): 3299- 3306.
doi: 10.1002/adfm.v23.26
99
JUNG Y C , CHO J W . Application of shape memory polyurethane in orthodontic[J]. Journal of Materials Science:Materials in Medicine, 2010, 21 (10): 2881- 2886.
doi: 10.1007/s10856-008-3538-7
100
LENDLEIN A , LANGER R . BIODEGRADABLE, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296 (5573): 1673- 1676.
doi: 10.1126/science.1066102
101
SZEWCZYK J , MARCHANDISE E , FLAUD P , et al. Active catheters for neuroradiology[J]. Journal of Robotics and Mechatronics, 2011, 23 (1): 105- 115.
doi: 10.20965/jrm.2011.p0105
102
ABADIE J , CHAILLET N , LEXCELLENT C . Modeling of a new SMA micro-actuator for active endoscopy applications[J]. Mechatronics, 2009, 19 (4): 437- 442.
doi: 10.1016/j.mechatronics.2008.11.010
103
ZHANG J , YIN Y . SMA-based bionic integration design of self-sensor-actuator-structure for artificial skeletal muscle[J]. Sensors and Actuators A:Physical, 2012, 181, 94- 102.
doi: 10.1016/j.sna.2012.05.017
104
MU J , HOU C , WANG H , et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices[J]. Science Advances, 2015, 1 (10): e1500533.
doi: 10.1126/sciadv.1500533
105
FELTON S , TOLLEY M , DEMAINE E , et al. A method for building self-folding machines[J]. Science, 2014, 345 (6197): 644- 646.
doi: 10.1126/science.1252610
106
WESTON-DAWKES W P, ONG A C, MAJIT M R A, et al. Towards rapid mechanical customization of cm-scale self-folding agents[C]//IEEE International Conference on Intelligent Robots and Systems. Vancouver: JEEE, 2017: 4312-4318.
HE X C , GAO J P , AN X F , et al. Fabrication and performance of shape memory epoxy resin composite[J]. Journal of Aeronautical Materials, 2014, 34 (6): 62- 66.