Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (8): 1-13    DOI: 10.11868/j.issn.1001-4381.2018.000344
  综述 本期目录 | 过刊浏览 | 高级检索 |
形状记忆智能复合材料的发展与应用
蒋建军, 胡毅, 陈星, 王林文, 任恩毅, 高新宇, 邓国力
西北工业大学 航空宇航制造系, 西安 710072
Development and Application of Shape Memory Intelligent Composites
JIANG Jian-jun, HU Yi, CHEN Xing, WANG Lin-wen, REN En-yi, GAO Xin-yu, DENG Guo-li
Department of aircraft manufacturing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(3937 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 智能材料是一种能够感知外部环境变化并自主进行判断、处理以及适度响应的新型智能多功能材料,同时也是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,它的兴起引发了材料科学的一次新的革命。本文从形状记忆智能复合材料的历史起源入手,聚焦形状记忆合金和形状记忆聚合物最新研究成果,分别从形状记忆机理和工程实际应用等多个角度进行阐述,并对现阶段的技术发展难题,如形状记忆合金:生物相容性差、形变恢复小、驱动速度缓慢、疲劳寿命短;形状记忆聚合物:增材制造技术过程复杂、强度和刚度小等进行讨论,最后对未来发展前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋建军
胡毅
陈星
王林文
任恩毅
高新宇
邓国力
关键词 智能材料复合材料形状记忆合金形状记忆聚合物形状记忆效应    
Abstract:Intelligent material is a new type of smart multifunctional material that can spontaneously sense the change of external environment and judge, handle and properly make the response. At the same time, it's also the fourth generation material after natural material, synthetic polymer and artificial design material, triggering a new revolution in material science. Starting from the historical origin of shape memory composite, this paper details the latest development of shape memory alloy and shape memory polymer from aspects of shape memory mechanism and engineering application. The discussions of recent technological problems are also included, such as the weak biocompatibility, small deformation, slow actuation velocity and brief fatigue life of SMA as well as the complex manufacture of 3D printing, small strength and stiffness of SMP, etc. The possible near development directions are finally forecasted.
Key wordsintelligent materials    composites    shape memory alloy    shape memory polymer    shape memory effect
收稿日期: 2018-03-29      出版日期: 2018-08-17
中图分类号:  TB33  
通讯作者: 蒋建军(1977-),男,教授,博士生导师,主要从事先进复合材料成型机理与制造工程的研究,联系地址:陕西省西安市西北工业大学友谊校区航空楼B座,E-mail:Jianjun@npwu.edu.cn     E-mail: Jianjun@npwu.edu.cn
引用本文:   
蒋建军, 胡毅, 陈星, 王林文, 任恩毅, 高新宇, 邓国力. 形状记忆智能复合材料的发展与应用[J]. 材料工程, 2018, 46(8): 1-13.
JIANG Jian-jun, HU Yi, CHEN Xing, WANG Lin-wen, REN En-yi, GAO Xin-yu, DENG Guo-li. Development and Application of Shape Memory Intelligent Composites. Journal of Materials Engineering, 2018, 46(8): 1-13.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000344      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/1
[1] 赵振业. 材料科学与工程的新时代[J]. 航空材料学报, 2016,36(3):1-6. ZHAO Z Y. A new age of materials science and engineering[J]. Journal of Aeronautical Materials, 2016,36(3):1-6.
[2] 杜善义,冷劲松,王殿富. 智能材料系统和结构[M]. 北京:科学出版社, 2001:1-3. DU S Y, LENG J S, WANG D F. Smart material systems and structures[M]. Beijing:Science Press, 2001:1-3.
[3] 于相龙,周济. 智能超材料研究与进展[J]. 材料工程, 2016,44(7):119-128. YU X L, ZHOU J. Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016,44(7):119-128.
[4] 李卓球,宋显辉. 智能复合材料结构体系[M]. 武汉:武汉理工大学出版社, 2005:262. LI Z Q, SONG X H. Structural system of intelligent composite[M]. Wuhan:Wuhan University of Technology Press,2005:262.
[5] 胡金莲. 形状记忆聚合物在生物医学领域的研究进展[J]. 中国材料进展, 2015, 34(3):191-203. HU J L. Progress of shape memory polymers in biomedical applications[J]. Materials China, 2015, 34(3):191-203.
[6] 沈学霖,朱光明,杨鹏飞. 生物医用形状记忆高分子材料[J]. 材料工程, 2017, 45(7):111-117. SHEN X L, ZHU G M, YANG P F. Biomedical shape memory polymers[J]. Journal of Materials Engineering, 2017, 45(7):111-117.
[7] YAKACKI C M, SHANDAS R, SAFRANSKI D, et al. Strong, tailored, biocompatible shape-memory polymer networks[J]. Advanced Functional Materials, 2008, 18(16):2428-2435.
[8] LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573):1673-1676.
[9] LAN X, LIU Y, LV H, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials and Structures, 2009, 18(2):1560-1574.
[10] LASCHI C, CIANCHETTI M, MAZZOLAI B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7):709-727.
[11] NAJEM J, SARLES S A, AKLE B, et al. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators[J]. Smart Materials and Structures, 2012, 21(9):094026.
[12] CASTELLANO M G, INDIRLI M, MARTELLI A. Progress of application, research and development and design guidelines for shape memory alloy devices for cultural heritage structures in Italy[J]. Proceedings of SPIE——The International Society for Optical Engineering, 2001, 4330(1):250-261.
[13] 李云飞,陈成,曾祥国. NiTi合金的相变-塑性统一本构模型与数值算法[J]. 航空材料学报, 2018,38(1):26-32. LI Y F, CHEN C, ZENG X G. Unified constitutive model and numerical implementation of NiTi alloy involving phase transformation and plasticity[J]. Journal of Aeronautical Materials, 2018,38(1):26-32.
[14] ÖLANDER A. An electrochemical investigation of solid cadmium-gold alloys[J]. Journal of the American Chemical Society, 1932, 54(10):3819-3833.
[15] KAEUFER H, RAUTENBERG L, PAHL J. Process for the manufacture of articles of high mechanical strength from thermoplastic synthetic resins[P].US41129182A.
[16] BUEHLER W J, GILFRICH J V, WILEY R C. Effect of low-temperature phase changes on the mechanical properties of Alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34(5):1475-1477.
[17] JANI J M, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56(14):1078-1113.
[18] KAUFFMAN G, MAYO I. The story of Nitinol:the serendipitous discovery of the memory metal and its applications[J]. The Chemical Educator, 1997, 2(2):1-21.
[19] 王楠,燕绍九,彭思侃,等. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017,45(12):112-125. WANG N, YAN S J, PENG S K, et al. Research progress on 3D printed graphene materials synthesis technology and its application in energy storage field[J]. Journal of Materials Engineering, 2017,45(12):112-125.
[20] 卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4. LU B H, LI D C. Development of the additive manufacturing (3D printing) technology[J]. Journal of Machine Building & Automation, 2013,42(4):1-4.
[21] 李涤尘,贺健康,田小永,等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6):129-135. LI D C, HE J K,TIAN X Y,et al. Additive manufacturing:integrated fabrication of macro/microstructures[J].Journal of Mechanical Engineering, 2013,49(6):129-135.
[22] 王延庆,沈竞兴,吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016,36(4):89-98. WANG Y Q, SHEN J X, WU H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016,36(4):89-98.
[23] 杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017,45(9):13-21. YANG P H, GAO X X, LIANG J,et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017,45(9):13-21.
[24] MA J, FRANCO B, TAPIA G, et al. Spatial control of functional response in 4D-printed active metallic structures[J]. Scientific Reports, 2017, 7:46707.
[25] HABERLAND C, ELAHINIA M, WALKER J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Materials and Structures, 2014, 23(10):e104002.
[26] CARRENO-MORELLI E, MARTINERIE S, BIDAUX J E. Three-dimensional printing of shape memory alloys[J]. Materials Science Forum, 2007, 534/536:477-480.
[27] HEHR A, DAPINO M J. Dynamics of ultrasonic additive manufacturing[J]. Ultrasonics, 2017, 73:49-66.
[28] 刘洪涛,孙光爱,王沿东,等. 冲击诱发NiTi形状记忆合金相变行为研究[J]. 物理学报, 2013,62(1):709-712. LIU H T, SUN G A, WANG Y D, et al. Shock-induced transformation behavior in NiTi shape memory alloy[J]. Acta Physica Sinica, 2013,62(1):709-712.
[29] 龙大伟. 铝青铜表面激光熔覆层的腐蚀性与高温摩擦性能的研究[D]. 兰州:兰州理工大学, 2010. LONG D W. Study of corrosion and high temperature friction performance of laser cladding on aluminum bronze[D]. Lanzhou:Lanzhou University of Technology, 2010.
[30] 徐鹏. 激光熔覆Fe17Mn5Si10Cr5Ni记忆合金涂层及其组织与性能研究[D]. 大连:大连海事大学, 2015. XU P. Research on microstructure and properties of Fel7Mn5Sil0Cr5Ni shape memory alloy coating fabricated by laser cladding[D]. Dalian:Dalian Maritime University, 2015.
[31] TOKER S M, GERSTEIN G, MAIER H J, et al. Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid[J]. Journal of Materials Science, 2018, 53(2):948-958.
[32] TOKER S M, CANADINC D, MAIER H J, et al. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys:Geometry and body location dependency[J]. Materials Science and Engineering:C, 2014, 36(1):118-129.
[33] SUN X T, KANG Z X, ZHANG X L, et al. A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution[J]. Electrochimica Acta, 2011, 56(18):6389-6396.
[34] SHABALOVSKAYA S A, TIAN H, ANDEREGG J W, et al. The influence of surface oxides on the distribution and release of nickel from Nitinol wires[J]. Biomaterials, 2009, 30(4):468-477.
[35] LI H F, QIU K J, ZHOU F Y, et al. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application[J]. Scientific Reports, 2016, 6:37475.
[36] LUO P, WANG S N, ZHAO T T, et al. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy[J]. Rare Metals, 2013, 32(2):113-121.
[37] TEH Y H, FEATHERSTONE R. An architecture for fast and accurate control of shape memory alloy actuators[J]. International Journal of Robotics Research, 2008, 27(5):595-611.
[38] VELÁZQUEZ R, PISSALOUX E E. Modelling and temperature control of shape memory alloys with fast electrical heating[J]. International Journal of Mechanics & Control, 2012, 13(2):3-10.
[39] BARBARINO S, SAAVEDRA FLORES E L, AJAJ R M, et al. A review on shape memory alloys with applications to morphing aircraft[J]. Smart Materials and Structures, 2014, 23(6):063001.
[40] SONG S H, LEE J Y, RODRIGUE H, et al. 35Hz shape memory alloy actuator with bending-twisting mode[J]. Scientific Reports, 2016, 6:21118.
[41] SCIRÈ M G, DRAGONI E. Functional fatigue of shape memory wires under constant-stress and constant-strain loading conditions[J]. Procedia Engineering, 2011, 10(7):3692-3707.
[42] SCIRÈ MAMMANO G,DRAGONI E. Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints[J]. Frattura ed Integrità Strutturale, 2012, 23(23):25-33.
[43] MATHEUS T C U, MENEZES W M M, RIGO O D, et al. The influence of carbon content on cyclic fatigue of NiTi SMA wires[J]. International Endodontic Journal, 2011, 44(6):567-573.
[44] TAKEDA K, MATSUI R, TOBUSHI H, et al. Enhancement of bending fatigue life in TiNi shape-memory alloy tape by nitrogen ion implantation[J]. Archives of Mechanics, 2015, 67(4):293-310.
[45] TANAKA Y, HIMURO Y, KAINUMA R, et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity[J]. Science, 2010, 327(5972):1488-1490.
[46] WEN Y H, PENG H B, RAABE D, et al. Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries[J]. Nature Communications, 2014, 5:4964.
[47] KUMBHAR S B, CHAVAN S P, GAWADE S S. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite[J]. Mechanical Systems and Signal Processing, 2018, 100:208-223.
[48] GHAFOORI E, HOSSEINI E, LEINENBACH C, et al. Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening[J]. Materials & Design, 2017, 133:349-362.
[49] BONNOT E, ROMERO R, MAÑOSA L, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J]. Physical Review Letters, 2008, 100(12):125901.
[50] SCHMIDT M, SCHVTZE A, SEELECKE S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes[J]. International Journal of Refrigeration, 2015, 54:88-97.
[51] CUI J, WU Y, MUEHLBAUER J, et al. Demonstration of high efficiency elastocaloric cooling with large Delta T using NiTi wires[J]. Applied Physics Letters, 2012, 101(7):0739047.
[52] MOYA X, KAR-NARAYAN S, MATHUR N D. Caloric materials near ferroic phase transitions[J]. Nature Materials, 2014, 13(5):439-450.
[53] YUAN G, BAI Y, JIA Z, et al. Enhancement of interfacial bonding strength of SMA smart composites by using mechanical indented method[J]. Composites Part B:Engineering, 2016, 106:99-106.
[54] WANG W, RODRIGUE H, AHN S H. Deployable soft composite structures[J]. Scientific Reports, 2016, 6:20869.
[55] BRAILOVSKI V, TERRIAULT P, GEORGES T, et al. SMA actuators for morphing wings[J]. Physics Procedia, 2010, 10(12):197-203.
[56] DONG Y, BOMING Z, JUN L. A changeable aerofoil actuated by shape memory alloy springs[J]. Materials Science and Engineering:A, 2008, 485(1):243-250.
[57] 孟祥龙,蔡伟. TiNi基形状记忆材料及应用研究进展[J]. 中国材料进展, 2011, 30(9):13-20. MENG X L, CAI W. Development of TiNi-based shape memory materials and their applications[J]. Journal of Rare Metals Letters, 2011, 30(9):13-20.
[58] KIM Y, CHENG S S, DIAKITE M, et al. Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot[J]. Journal of IEEE Transactions on Robotics, 2017,33(6):1386-1397.
[59] STRAUß S, DUDZIAK S, HAGEMANN R, et al. Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress[J]. PLoS ONE, 2012, 7(12):e51264.
[60] JIN H, DONG E, XU M, et al. Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots[J]. Smart Material Structures, 2016, 25(8):85026.
[61] SEOK S, ONAL C D, CHO K J, et al. Meshworm:a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5):1485-1497.
[62] BARTLETT M D, KAZEM N, POWELL-PALM M J, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9):2143-2148.
[63] LOH C S, YUKOI H, ARAI T. New shape memory alloy actor:design and application in the prosthetic hand[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology.Japan:University of Tokyo,2005.
[64] GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[C]//14th Annual Conference on Towards Autonomous Robotic Systems(TAROS).Berlin:Springer-Verlag,2014.
[65] KIM H, SONG S, AHN S. A turtle-like swimming robot using a smart soft composite (SSC) structure[J]. Smart Materials Structures, 2013, 22(1):014007.
[66] LI Y, RIOS O, KEUM J K, et al. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds[J]. ACS Applied Materials and Interfaces, 2016, 8(24):15750-15757.
[67] EBARA M. Shape-memory surfaces for cell mechanobiology[J]. Science and Technology of Advanced Materials. 2015, 16(1):14804.
[68] 查理斯贝. 原子辐射与聚合物[M]. 上海:上海科学技术出版社, 1963. Charlesby. Atomic radiation and polymer[M]. Shanghai:Shanghai Science and Technology Press, 1963.
[69] OTA S. Current status of irradiated heat-shrinkable tubing in Japan[J]. Radiation Physics and Chemistry, 1981, 18(1):81-87.
[70] 于明昕,周啸. 溶液法合成聚氨酯的形状记忆材料及其性能[J]. 清华大学学报(自然科学版), 2002,42(5):607-610. YU M X, ZHOU X. Performance of shape memory materials made of solution polymerized polyurethane[J]. Journal of Tsinghua University(Science and Technology), 2002,42(5):607-610.
[71] CHOI J, KWON O C, JO W, et al. 4D printing technology:a review[J]. 3D Printing and Additive Manufacturing, 2015, 2(4):159-167.
[72] DING Z, YUAN C, PENG X, et al. Direct 4D printing via active composite materials[J]. Science Advances, 2017, 3(4):e1602890.
[73] HUANG L, JIANG R, WU J, et al. Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Materials, 2017, 29(7):e1605390.
[74] GE Q, QI H J, DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103(13):e131901.
[75] FELTON S M, TOLLEY M T, SHIN B, et al. Self-folding with shape memory composites[J]. Soft Matter, 2013, 9(32):7688-7694.
[76] SHAFFER S, YANG K, VARGAS J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation[J]. Polymer (United Kingdom), 2014, 55(23):5969-5979.
[77] WANG J, SUN L, ZOU M, et al. Bioinspired shape-memory graphene film with tunable wettability[J]. Science Advances, 2017, 3(6):e1700004.
[78] CHEN H, LI Y, LIU Y, et al. Highly pH-sensitive polyurethane exhibiting shape memory and drug release[J]. Polymer Chemistry, 2014, 5(17):5168-5174.
[79] SHEN Q, TRABIA S, STALBAUM T, et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation[J]. Scientific Reports, 2016, 6:e24462.
[80] LI P, HAN Y, WANG W, et al. Novel programmable shape memory polystyrene film:a thermally induced beam-power splitter[J]. Scientific Reports, 2017, 7:e44333.
[81] XU H, YU C, WANG S, et al. Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23(26):3299-3306.
[82] LU H, LIU Y, GOU J, et al. Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite[J]. Applied Physics Letters, 2010, 96(8):e084102.
[83] RODRIGUEZ E D, LUO X, MATHER P T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH)[J]. ACS Applied Materials & Interfaces, 2011, 3(2):152-161.
[84] WEI H, YAO Y, LIU Y, et al. A dual-functional polymeric system combining shape memory with self-healing properties[J]. Composites Part B:Engineering, 2015, 83:7-13.
[85] LU H, YU K, SUN S, et al. Mechanical and shape-memory behavior of shape-memory polymer composites with hybrid fillers[J]. Polymer International, 2010, 59(6):766-771.
[86] RODRIGUEZ J N, ZHU C, DUOSS E B, et al. Shape-morphing composites with designed micro-architectures[J]. Scientific Reports, 2016, 6:27933.
[87] MOHR R, KRATZ K, WEIGEL T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10):3540-3545.
[88] LIN L, ZHANG L, GUO Y. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA[J]. Materials Research Express, 2018, 5(1):015702.
[89] FAN J, LI G. High enthalpy storage thermoset network with giant stress and energy output in rubbery state[J]. Nature Communications, 2018, 9(1):642.
[90] 刘立武,赵伟,兰鑫,等. 智能软聚合物及其航空航天领域应用[J]. 哈尔滨工业大学学报, 2016(5):1-17. LIU L W, ZHAO W, LAN X, et al. Soft intelligent material and its applications in aerospace[J]. Journal of Harbin Institute of Technology, 2016(5):1-17.
[91] 孙健. 基于SMPC蒙皮和主动蜂窝结构的可变形机翼结构研究[D]. 哈尔滨:哈尔滨工业大学, 2015. SUN J. Investigation on morphing wing structures based on shape memory polymer composite (SMPC) skins and active honeycomb structures[D]. Harbin:Harbin Institute of Technology, 2015.
[92] 陈钱,白鹏,尹维龙,等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报, 2013(1):40-46. CHEN Q, BAI P, YIN W L,et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J].Journal of Acta Aerodynamica Sinica, 2013(1):40-46.
[93] LIN J, KNOLL C, WILLEY C. Shape memory rigidizable inflatable (RI) structures for large space systems applications[M]. Newport:American Institute of Aeronautics and Astronautics, 2006.
[94] CADOGAN D, SCHEIR C. Expandable habitat technology demonstration for lunar and antarctic applications[J]. SAE Technical Papers, 2008.
[95] RODRIGUEZ J N, CLUBB F J, WILSON T S, et al. In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model[J]. Journal of Biomedical Materials Research-Part A, 2014, 102(5):1231-1242.
[96] ZHAO W, LIU L, LAN X, et al. Adaptive repair device concept with shape memory polymer[J]. Smart Materials and Structures, 2017, 26(2):025027.
[97] SMALL W, WILSON T, BENETT W, et al. Laser-activated shape memory polymer intravascular thrombectomy device[J]. Optics Express, 2005, 13(20):8204-8213.
[98] XU H, YU C, WANG S, et al. Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23(26):3299-3306.
[99] JUNG Y C, CHO J W. Application of shape memory polyurethane in orthodontic[J]. Journal of Materials Science:Materials in Medicine, 2010, 21(10):2881-2886.
[100] LENDLEIN A, LANGER R. BIODEGRADABLE, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573):1673-1676.
[101] SZEWCZYK J, MARCHANDISE E, FLAUD P, et al. Active catheters for neuroradiology[J]. Journal of Robotics and Mechatronics, 2011, 23(1):105-115.
[102] ABADIE J, CHAILLET N, LEXCELLENT C. Modeling of a new SMA micro-actuator for active endoscopy applications[J]. Mechatronics, 2009, 19(4):437-442.
[103] ZHANG J, YIN Y. SMA-based bionic integration design of self-sensor-actuator-structure for artificial skeletal muscle[J]. Sensors and Actuators A:Physical, 2012, 181:94-102.
[104] MU J, HOU C, WANG H, et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices.[J]. Science Advances, 2015, 1(10):e1500533.
[105] FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J]. Science, 2014, 345(6197):644-646.
[106] WESTON-DAWKES W P, ONG A C, MAJIT M R A, et al. Towards rapid mechanical customization of cm-scale self-folding agents[C]//IEEE International Conference on Intelligent Robots and Systems.Vancouver:JEEE,2017:4312-4318.
[107] 何先成,高军鹏,安学锋,等. 环氧树脂基形状记忆复合材料的制备与性能[J]. 航空材料学报, 2014,34(6):62-66. HE X C, GAO J P, AN X F, et al. Fabrication and performance of shape memory epoxy resin composite[J]. Journal of Aeronautical Materials, 2014,34(6):62-66.
[1] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[2] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[3] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[4] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[5] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[6] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[7] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[8] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[9] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[10] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[13] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[14] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[15] 刘英, 张永安, 王卫, 李冬生, 王俊伟, 梁玉冬. Fe对(Cu-Ni-Fe)-xNiFe2O4复合惰性阳极低温铝电解成膜机制的影响[J]. 材料工程, 2019, 47(2): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn