Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 1-7    DOI: 10.11868/j.issn.1001-4381.2018.000360
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
高能微波辐照合成类石墨烯氮化碳纳米片的结构特征
邹婧叶1, 余永志1,2, 顾永攀1, 岳夏薇1, 孟江1,3, 李淑萍3, 王继刚1,3
1. 东南大学 材料科学与工程学院江苏省先进金属材料重点实验室, 南京 211189;
2. 景德镇陶瓷大学 国家日用及建筑陶瓷工程技术研究中心, 江西 景德镇 333001;
3. 西藏民族大学 西藏水污染控制与环境修复工程实验室, 陕西 咸阳 712082
Structural feature of graphene-like graphitic carbon nitride nanosheets synthesized via high-energy microwave irradiation
ZOU Jing-ye1, YU Yong-zhi1,2, GU Yong-pan1, YUE Xia-wei1, MENG Jiang1,3, LI Shu-ping3, WANG Ji-gang1,3
1. Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
2. National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi, China;
3. Xizang Engineering Laboratory for Water Pollution Control and Ecological Remediation, Xizang Minzu University, Xianyang 712082, Shaanxi, China
全文: PDF(4503 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以碳纤维为微波吸收剂,基于微波辐照法直接处理三聚氰胺,快速高效地合成类石墨烯结构的氮化碳纳米片。借助于场发射扫描电子显微镜、透射电子显微镜、原子力显微镜、X射线衍射和傅里叶变换红外光谱等分析手段,对微波合成产物进行表征。结果表明:与常规热缩聚合成的石墨相氮化碳相比,高能微波技术合成产物具有明显的纳米片特征,即成功地制备得到类石墨烯结构的氮化碳纳米片。同时,与超声剥离或氧化刻蚀得到的类石墨烯氮化碳纳米片相比,高能微波技术合成产物表面光滑平整,且可发现脆性断裂的现象,呈现出一定的刚性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹婧叶
余永志
顾永攀
岳夏薇
孟江
李淑萍
王继刚
关键词 微波合成类石墨烯氮化碳纳米片结构特征刚性    
Abstract:Microwave synthesis has many advantages covering rapid, high-efficient, environmentally-friendly etc. Herein, graphene-like carbon nitride nanosheets (g-C3N4-NS) were successfully prepared by high-energy microwave heating method using melamine and carbon fibers as precursor and microwave absorber, respectively. The as-synthesized samples were investigated via various analytic techniques including X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and fourier transform infrared spectroscopy (FT-IR). Results show that the g-C3N4-NS sample prepared by microwave heating exhibits the obvious feature of graphene-like ultra-thin nanosheets in comparison with sample synthesized by conventional thermal polycondensation. Meanwhile, compared with graphene-like carbon nitride nanosheets prepared by other approaches including ultrasonic exfoliation and oxidation etching methods, the sample synthesized by microwave heating has smooth, flat and strong rigidity surface.
Key wordsmicrowave synthesis    graphene-like carbon nitride nanosheet    structural feature    rigidity
收稿日期: 2018-04-01      出版日期: 2019-03-12
中图分类号:  TB34  
通讯作者: 王继刚(1973-),男,教授,博士,博士生导师,主要从事新型碳材料的研究,联系地址:江苏省南京市江宁区东南大学路2号东南大学九龙湖校区(211189),E-mail:wangjigang@seu.edu.cn     E-mail: wangjigang@seu.edu.cn
引用本文:   
邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
ZOU Jing-ye, YU Yong-zhi, GU Yong-pan, YUE Xia-wei, MENG Jiang, LI Shu-ping, WANG Ji-gang. Structural feature of graphene-like graphitic carbon nitride nanosheets synthesized via high-energy microwave irradiation. Journal of Materials Engineering, 2019, 47(3): 1-7.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000360      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/1
[1] LEIBIG J. Uber einige Stickstoff-Verbindungen[J]. Annalen der Pharmacie,1834, 10(1):1-47.
[2] LIU A Y, COHEN M L. Prediction of new low compressibility solids[J]. Science,1989, 245(4920):841-842.
[3] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides[J]. Science,1996, 271(5245):53-55.
[4] WANG Y, WANG X, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie International Edition,2012, 51(1):68-89.
[5] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir,2009, 25(17):10397-10401.
[6] LU Q, DENG J, HOU Y, et al. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid[J]. Chemical Communications, 2015, 51(61):12251-12253.
[7] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80.
[8] HONG J, YIN S, PAN Y, et al. Porous carbon nitride nanosheets for enhanced photocatalytic activities[J]. Nanoscale, 2014, 6(24):14984-14990.
[9] ZHU K, WANG W, MENG A, et al. Mechanically exfoliated g-C3N4 thin nanosheets by ball milling as high performance photocatalysts[J]. RSC Advances,2015, 5(69):56239-56243.
[10] HUANG Z, LI F, CHEN B, et al. Nanoporous photocatalysts developed through heat-driven stacking of graphitic carbon nitride nanosheets[J]. RSC Advances, 2015, 5(18):14027-14033.
[11] XU J, ZHANG L, SHI R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46):14766-14772.
[12] WANG W, CHAKRABARTI S, CHEN Z, et al. A novel bottom-up solvothermal synthesis of carbon nanosheets[J]. Journal of Materials Chemistry A,2014, 2(7):2390-2396.
[13] CHENG N, JIANG P, LIU Q, et al. Graphitic carbon nitride nanosheets:one-step, high-yield synthesis and application for Cu2+ detection[J]. The Analyst,2014, 139(20):5065-5068.
[14] PATETE J M, PENG X, KOENIGSMANN C, et al. Viable methodologies for the synthesis of high-quality nanostructures[J]. Green Chemistry, 2011, 13(3):482-519.
[15] 高军. 微纳结构g-C3N4的制备与性能研究[D]. 南京:南京大学, 2012. GAO J. Research on synthesis of micro-nano structured g-C3N4 and their properties[D]. Nanjing:Nanjing University, 2012.
[16] 裴昭君. 微波辅助制备石墨相碳化氮可见光催化降解罗丹明B的试验研究[D]. 成都:成都理工大学, 2014. PEI Z J. Study on photocatalytic degradation of rhodamine B with graphite carbon nitrogen under visible light[D]. Chengdu:Chengdu University of Technology, 2014.
[17] YUAN Y, YIN L, CAO S, et al. Microwave-assisted heating synthesis:a general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photocatalytic H2 production[J]. Green Chemistry, 2014, 16:4663-4668.
[18] WANG J G, LIU S, DING T, et al. Synthesis, characterization, and photoluminescence properties of bulk-quantity β-SiC/SiOx coaxial nanowires[J]. Materials Chemistry and Physics, 2012, 135:1005-1011.
[19] LIU S, WANG J G. Ultra-violet emission from one dimensional and micro-sized SiC obtained via microwave heating[J]. Materials Science in Semiconductor Processing, 2017, 72:60-66.
[20] YU Y Z, WANG J G. Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity[J]. Ceramics International,2016, 42(3):4063-4071.
[21] YU Y Z, ZHOU Q, WANG J. The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission[J]. Chemical Communications, 2016, 52(16):3396-3399.
[22] YU Y Z, WANG C, LUO L, et al. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation[J]. Chemical Engineering Journal,2018, 334:1869-1877.
[23] 梁庆华. 石墨相氮化碳的结构调控及增强光催化性能研究[D]. 北京:清华大学, 2016. LIANG Q H. Structural tuning of graphitic carbon nitrides with highly improved photocatalytic performance[D]. Beijing:Tsinghua University, 2016.
[24] 吴星瞳. 石墨相氮化碳微纳米材料的制备及光催化性能研究[D]. 长春:吉林大学, 2015. WU X T. Studies on synthesis characterization and photocatal-ytic properties of graphitic carbon nitride and its composites[D]. Changchun:Jilin University, 2015.
[25] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials,2012, 22(22):4763-4770.
[26] MENENDEZ J A, JUAREZ-PEREZ E J, RUISANCHEZ E, et al. Ball lightning plasma and plasma arc formation during the microwave heating of carbons[J]. Carbon, 2011, 49(1):346-349.
[27] WANG J G, LIU S, HUANG S, et al. EBSD characterization the growth mechanism of SiC synthesized via direct microwave heating[J]. Materials Characterization, 2016, 114(3):54-61.
[28] KROKE E, SCHWARZ M, HORATH-BORDON E, et al. Tri-s-triazine derivatives part I from trichloro-tri-s-triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002, 26(5):508-512.
[29] 黄珊,王继刚,刘松,等. 高能微波辐照条件下SiC晶粒的生长过程分析[J]. 无机材料学报, 2014,29(2):149-154. HUANG S, WANG J G, LIU S, et al. Growth process of SiC grains prepared by high-energy microwave irradiation[J]. Journal of Inorganic Materials, 2014,29(2):149-154.
[30] THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41):4893-4908.
[31] LI X, ZHANG J, CHEN X, et al. Condensed graphitic carbon nitride nanorods by nanoconfinement:Promotion of crystallinity on photocatalytic conversion[J]. Chemistry of Materials, 2011, 23(19):4344-4348.
[32] SONH X, YANG Q, JIANG X, et al. Porous graphitic carbon nitride nanosheets prepared under self-producing atmosphere for highly improved photocatalytic activity[J]. Applied Catalysis B:Environmental, 2017, 217:322-330.
[33] HONG Y, LI C, FANG Z, et al. Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. Carbon, 2017, 121:463-471.
[34] BOJDYS M J, MULLER J, ANTONIETTI M, et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride[J]. Chemistry-A European Journal, 2008, 14(27):8177-8182.
[35] YAN J, ZHOU C, LI P, et al. Nitrogen-rich graphitic carbon nitride:controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016, 508:257-264.
[36] MING L, YUE H, XU L, et al. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity[J]. Journal of Materials Chemistry A,2014, 2(45):19145-19149.
[37] YANG S, GONG Y, ZHANG J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17):2452-2456.
[1] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[2] 陈秀华, 胡培, 汪海. 基于拉伸、压缩、剪切单轴强度试验值的材料三参数广义强度准则[J]. 材料工程, 2009, 0(10): 1-6.
[3] 栗付平, 边俊峰, 张洪雁. 耐低温氟醚橡胶结构和基本物理性能研究[J]. 材料工程, 1998, 0(10): 22-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn