Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 156-162    DOI: 10.11868/j.issn.1001-4381.2018.000367
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能
元云岗1, 康嘉杰1,2, 岳文1,2, 付志强1,2, 朱丽娜1,2, 佘丁顺1,2, 王成彪2,3
1. 中国地质大学(北京) 工程技术学院, 北京 100083;
2. 中国地质大学(北京) 郑州研究院, 郑州 451283;
3. 中国地质科学院 郑州矿产综合利用研究所, 郑州 450006
Tribological properties of TC4 titanium alloy treated by plasma nitriding at different temperatures
YUAN Yun-gang1, KANG Jia-jie1,2, YUE Wen1,2, FU Zhi-qiang1,2, ZHU Li-na1,2, SHE Ding-shun1,2, WANG Cheng-biao2,3
1. School of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083, China;
2. Zhengzhou Institute, China University of Geosciences(Beijing), Zhengzhou 451283, China;
3. Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China
全文: PDF(5670 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用等离子渗氮技术提升TC4钛合金的耐磨性并探究最优渗氮温度。利用LDM 1-100型等离子渗氮设备,在650,700,750,800,850℃和900℃温度下对TC4钛合金进行渗氮处理,保温时间均为10 h。利用光学显微镜、扫描电子显微镜、白光三维形貌仪、X射线衍射仪和显微硬度计分别对不同温度渗氮试样的微观组织结构、表面形貌、表面粗糙度、相结构和硬度进行表征。利用CETR UMT-3型多功能摩擦磨损试验机测试等离子渗氮后TC4钛合金的摩擦学性能。结果表明:TC4钛合金表面显微硬度和粗糙度随温度升高而增大,在900℃渗氮后TC4钛合金表面显微硬度达到了1318HV0.05,约为基体(360HV0.05)的4倍。硬度的升高是由于渗氮后试样表面形成了硬质氮化物相(TiN和Ti2N相),且随着渗氮温度升高氮化物的含量增加。相较于低温渗氮(低于750℃)的试样,850℃和900℃渗氮试样的承载能力显著提升。与原始TC4试样相比,渗氮处理后试样的磨损体积显著降低。当渗氮温度为850℃时,试样磨损体积为未处理试样磨损体积的1.2%(1 N),3.0%(3 N)和62.2%(5 N),试样的耐磨性提升更为显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
元云岗
康嘉杰
岳文
付志强
朱丽娜
佘丁顺
王成彪
关键词 TC4钛合金等离子渗氮组织结构摩擦磨损性能耐磨性    
Abstract:The wear resistance of TC4 titanium alloy was improved by plasma nitriding and the optimum nitriding temperature was investigated. TC4 titanium alloy was nitrided at 650, 700, 750, 800, 850℃ and 900℃ with LDM1-100 plasma nitriding equipment respectively,the temperature holding time is 10 h for each nitriding treatment. The microstructure, surface morphology, surface roughness, phase structure and hardness of nitrided samples at different temperatures were characterized by optical microscope, scanning electron microscope, white light three-dimensional topography instrument and microhardness tester. The tribological properties of TC4 titanium alloy after plasma nitriding were tested by CETR UMT-3 multifunctional friction and wear tester. The results show that the surface microhardness and roughness of TC4 titanium alloy increase with the increase of temperature. After nitriding at 900℃, the surface microhardness of TC4 titanium alloy reaches 1318HV0.05, which is about 4 times as high as that of the substrate (360HV0.05). The increase of hardness is due to the formation of hard nitride phases (TiN and Ti2N phases) on the surface of nitrided sample and the nitride content increases with the increase of nitriding temperature. The load-carrying capacity of nitrided samples at 800℃ and 900℃ is significantly higher than that of nitriding samples at low temperatures (below 750℃). Compared with the original TC4 sample, the wear volume of the nitrided sample significantly reduces. When nitriding temperature is 850℃, the wear volume of the nitrided sample is 1.2% (1 N), 3.0% (3 N) and 62.2% (5 N) of that of the untreated sample, and the improvement of wear resistance of the sample is the most obvious.
Key wordsTC4 titanium alloy    plasma nitriding    microstructure    tribological property    wear resistance
收稿日期: 2018-04-02      出版日期: 2020-03-03
中图分类号:  TH117.1  
通讯作者: 康嘉杰(1984-),男,副教授,博士,主要研究方向为机械摩擦学及表面工程,联系地址:北京市海淀区学院路29号中国地质大学(北京)工程技术学院(100083),E-mail:kangjiajie@cugb.edu.cn     E-mail: kangjiajie@cugb.edu.cn
引用本文:   
元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
YUAN Yun-gang, KANG Jia-jie, YUE Wen, FU Zhi-qiang, ZHU Li-na, SHE Ding-shun, WANG Cheng-biao. Tribological properties of TC4 titanium alloy treated by plasma nitriding at different temperatures. Journal of Materials Engineering, 2020, 48(2): 156-162.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000367      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/156
[1] 王欢,赵永庆,辛社伟,等.高强韧钛合金热加工技术与显微组织[J].航空材料学报,2018,38(4):56-63. WANG H,ZHAO Y Q,XIN S W,et al.Review thermomechanical processing and microstructure of high strength-toughness titanium alloy[J].Journal of Aeronautical Materials,2018,38(4):56-63.
[2] 季英萍,吴素君.应力比对Ti-6Al-2Zr-1Mo-1V合金疲劳裂纹扩展行为的影响[J].航空材料学报,2018,38(3):72-76. JI Y P,WU S J.Effect of stress ratio on fatigue crack growth behavior of Ti-6Al-2Zr-1Mo-1V alloy[J].Journal of Aeronautical Materials,2018,38(3):72-76.
[3] 陈孝文,李仁仆,张德芬,等.氧化时间对钛合金钻杆微弧氧化膜层结构和性能的影响[J].材料导报,2017,31(增刊1):489-492,518. CHEN X W,LI R P,ZHANG D F,et al.Effect of oxidation time on structure and properties of micro-arc oxidation film on titanium alloy drill pipe[J].Materials Review,2017,31(Suppl 1):489-492,518.
[4] HUANG H M,HSIEH S C,TENG N C,et al.Biological surface modification of titanium surfaces using glow discharge plasma[J].Medical & Biological Engineering & Computing,2011,49(6):701-706.
[5] 梁健,岳文,孙建华,等.超声波冷锻与阳极氧化处理铝合金钻杆摩擦学性能研究[J].地质与勘探,2016,52(3):576-583. LIANG J,YUE W,SUN J H,et al.Study on tribological properties of aluminum drill pipes under ultrasonic cold forging and anodic oxidation treatment[J].Geology and Exploration,2016,52(3):576-583.
[6] 温诗铸,黄平.摩擦学原理[M].第3版.北京:清华大学出版社,2012:420. WEN S Z,HUANG P.Principles of tribology[M].3rd ed. Beijing:Tsinghua University Press,2012:420.
[7] 高玉魁.表面完整性理论与应用[M].北京:化学工业出版社,2014:1-2. GAO Y K.Surface integrity theory and application[M].Beijing:Chemical Industry Press,2014:1-2.
[8] ANIOLEK K,KUPKA M,BARYLSKI A.Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation[J].Wear,2016,356/357:23-29.
[9] 杨闯,彭晓东,刘静,等.TC4钛合金低压真空氮化改性层的制备与性能[J].材料工程,2015,43(3):78-82. YANG C,PENG X D,LIU J,et al.Preparation and property of low pressure vacuum nitriding modified layer on TC4 titanium alloy[J].Journal of Materials Engineering,2015,43(3):78-82.
[10] QUAN H X,GAO S S,ZHU M H,et al.Comparison of the torsional fretting behavior of three porous titanium coatings for biomedical applications[J].Tribology International,2015,92:29-37.
[11] WANG S,MA Z,LIAO Z H,et al.Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy[J].Materials Science & Engineering C-Materials for Biological Applications,2015,57:123-132.
[12] GAO Y K.Influence of pulsed electron beam treatment on microstructure and properties of TA15 titanium alloy[J].Applied Surface Science,2013,264:633-635.
[13] GAO Y K.Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments[J].Applied Surface Science,2011,257(17):7455-7460.
[14] GUO F A,TRANNOY N,LU J.Microstructural analysis by scanning thermal microscopy of a nanocrystalline Fe surface induced by ultrasonic shot peening[J].Superlattices & Microstructures,2004,35(3/6):445-453.
[15] 张晓化,刘道新.电火花表面强化与喷丸复合处理对Ti811合金高温微动疲劳性能的影响[J].材料工程,2006(9):31-35,41. ZHANG X H,LIU D X.Effects of electrospark surface strengthening and shot peening on fretting fatigue of Ti811 alloy at elevated temperature[J].Journal of Materials engineering,2006(9):31-35,41.
[16] LIU Y G,LI M Q,LIU H J.Surface nano crystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening[J].Journal of Alloys & Compounds,2016,685:186-193.
[17] 屠振密,朱永明,李宁,等.钛及钛合金表面处理技术的应用及发展[J].表面技术,2009,38(6):76-78,86. TU Z M,ZHU Y M,LI N,et al.Applications and advances on surface treatment for titanium and titanium alloy[J].Surface Technology,2009,38(6):76-78,86.
[18] 刘洪喜,汤宝寅,王浪平,等.钛合金的等离子体浸没离子注入表面强化处理[J].稀有金属材料与工程,2005,34(8):1318-1321. LIU H X,TANG B Y,WANG L P,et al.Improvement on surface properties of titanium alloy by plasma immersion ion implantation technique[J].Rare Metal Materials and Engineering,2005,34(8):1318-1321.
[19] NOLAN D,HUANG S W,LESKOVSEK V,et al.Sliding wear of titanium nitride thin films deposited on Ti-6Al-4V alloy by PVD and plasma nitriding processes[J].Surface & Coatings Technology,2006,200(20/21):5698-5705.
[20] 张慧桥,黄晓波,田伟红,等.Ti6Al4V表面Ti-Cu-N纳米薄膜溅射沉积及其抗菌性能研究[J].表面技术,2014,43(4):1-5. ZHANG H Q,HUANG X B,TIAN W H,et al.Antibacterial properties of Ti-Cu-N composite films deposited on Ti6Al4V alloy by magnetron sputtering[J].Surface Technology,2014,43(4):1-5.
[21] MORITA T,UEHIGASHI N,KAGAYA C. Improvement of fatigue strength of Ti-6Al-4V alloy by hybrid surface treatment composed of plasma nitriding and fine-particle bombarding[J]. Materials Transactions,2013,54(9):1719-1724.
[22] VASCONCELLOS M A Z,LIMA S C,HINRICHS R.Hardness evaluation,stoichiometry and grain size of titanium nitride films obtained with plasma nitriding on Ti-6Al-4V samples[J].Materia-Rio de Janeiro,2010,15(2):299-302.
[23] YETIM A F,YILDIZ F,VANGOLU Y,et al.Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy[J].Wear,2009,267(12):2179-2185.
[24] RAHMAN M,HASHMI M S J.Saddle field fast atom beam source:a new low pressure plasma nitriding method for a alloy Ti-6Al-4V[J].Thin Solid Films,2006,515(1):129-134.
[25] NIU R L,LI J L,WANG Y X,et al.Structure and tribological behavior of GLCH/nitride coupled coatings on Ti6Al4V by nitriding and magnetron sputtering[J].Diamond & Related Materials,2016,64:70-79.
[26] FAN A L,ZHANG H Q,MA Y,et al.Bacteria adherence properties of nitrided layer on Ti6Al4V by the plasma nitriding technique[J].Journal of Wuhan University of Technology-Mater Sci Ed,2013,28(6):1223-1226.
[27] 郭纯,陈建敏,周健松,等.Ti-6AI-4V合金在模拟空间环境下的摩擦学性能[J].材料科学与工程学报,2012,30(6):822-826. GUO C,CHEN J M,ZHOU J S,et al.Tribological properties of Ti-6Al-4V in simulated space environments [J].Journal of Materials Science and Engineering,2012,30(6):822-826.
[28] SHE D S,YUE W,FU Z Q,et al.Effects of nitriding temperature on microstructures and vacuum tribological properties of plasma-nitrided titanium[J].Surface & Coatings Technology,2015,264:32-40.
[29] 佟宇,郭天文,洪春福,等.辉光等离子渗氮对纯钛铸件表面性能的影响[J].真空科学与技术学报,2010,30(1):76-79. TONG Y,GUO T W,HONG C F,et al.Plasma nitridation and mechanical properties of pure titanium casts[J].Chinese Journal of Vacuum Science and Technology,2010,30(1):76-79.
[30] 佟宇,郭天文,王菁,等.等离子渗氮、离子镀TiN复合处理对纯钛铸件硬度及耐磨性的影响[J].真空科学与技术学报,2011,31(4):402-405. TONG Y,GUO T W,WANG J,et al.Surface modification of cast titanium used as denture framework[J].Chinese Journal of Vacuum Science and Technology,2011,31(4):402-405.
[31] ALI M M,RAMAN S G S,PATHAK S D,et al.Influence of plasma nitriding on fretting wear behaviour of Ti-6Al-4V[J].Tribology International,2010,43(1/2):152-160.
[32] YILBAS B S,SAHINA Z,AlGARNIA Z,et al.Plasma nitriding of Ti-6Al-4V alloy to improve some tribological properties[J].Surface & Coatings Technology,1996,80(3):287-292.
[1] 王欣, 许春玲, 李臻熙, 裴传虎, 汤智慧. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响[J]. 材料工程, 2020, 48(9): 138-143.
[2] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[3] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[4] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[5] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[6] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[7] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[8] 鲍亚运, 纪秀林, 姬翠翠, 赵建华, 程江波, 徐霖. 激光熔覆FeCrNiCoCuAlx高熵合金涂层的耐腐蚀与抗冲蚀性能[J]. 材料工程, 2019, 47(11): 141-147.
[9] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[10] 杨勇维, 符寒光, 鞠江, 王开明, 雷永平, 朱礼龙, 江亮. 铬对高钒耐磨合金凝固组织和耐磨性能的影响[J]. 材料工程, 2018, 46(9): 122-130.
[11] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[12] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[13] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[14] 唐仕光, 陈泉志, 蒋智秋, 童庆, 董婉冰, 李伟洲. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164.
[15] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn