Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 63-69    DOI: 10.11868/j.issn.1001-4381.2018.000379
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征
卢璐, 吴磊, 史继诚, 徐洪峰, 丛涛泉
大连交通大学 辽宁省新能源电池重点实验室, 辽宁 大连 116028
Preparation and characterization of anti-flooding functional Pt/C catalyst for PEMFC
LU Lu, WU Lei, SHI Ji-cheng, XU Hong-feng, CONG Tao-quan
Liaoning Province Key Laboratory of New Energy Battery, Dalian Jiaotong University, Dalian 116028, Liaoning, China
全文: PDF(1968 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 催化剂的碳载体腐蚀是Pt/C催化剂催化性能下降的重要原因,并且亲水性的催化剂增加了质子交换膜燃料电池氧电极发生水淹的风险。利用过氧化氢对XC-72碳进行氧化预处理,负载Pt后,进一步用水合肼对Pt/C催化剂还原,制备耐蚀性和抗溺水性的Pt/C催化剂。对红外光谱吸收峰进行比较可知,经双氧水处理后,XC-72碳表面的含氧官能团数量增加,其接触角小于未经处理的XC-72碳;进一步用水合肼还原氧化后的XC-72碳,接触角较氧化的XC-72碳增大22.4°,抗溺水性增强。由比表面积测定可知,双氧水处理XC-72碳,比表面积下降,但中孔比例增加,有利于Pt的负载。水合肼还原后的Pt/C催化剂较还原之前的Pt/C催化剂抗溺水性增强,接触角增大6.2°。经2000周次循环伏安扫描,水合肼还原后的Pt/C催化剂电化学比表面损失减小,耐久性提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢璐
吴磊
史继诚
徐洪峰
丛涛泉
关键词 质子交换膜燃料电池催化剂抗溺水性过氧化氢水合肼    
Abstract:The important reason of the reduction of the catalytic performance of Pt/C catalyst is carbon carrier corrosion. The risk of oxgen flooding in proton-exchange membrane fuel cellsis also increased by hydrophilicity of this catalyst. The Pt/C catalyst was subsequently reduced using hydrazine hydrate to make Pt/C corrosion resistant and anti-flooding. Comparison by infrared spectra of absorption peaks shows the increased number of oxygen-containing functional groups in the XC-72 carbon surface treated with hydrogen peroxide. Its measured contact angle is less than that of untreated XC-72 carbon. Reduction of oxidized XC-72 carbon with hydrazine hydrate shows that the contact angle is increased by 22.4° compared with that of the oxidized XC-72 carbon, indicating anti-flooding enhancement. As shown in the specific surface area measurement, the specific surface area of XC-72 is reduced by the hydrogen peroxide treatment but its mespopore ratio is increased, which favors the carrier load Pt. The anti-flooding of Pt/C catalyst after reduction with hydrazine hydrate is stronger than that before reduction, indicating an increase in contact angle by 6.2°. After 2000 cycles of cyclic voltammetry, the electrochemical specific surface loss is decreased and the durability is improved for the reduced Pt/C catalyst by hydrazine hydrate.
Key wordsproton exchange membrane fuel cell    catalyst    anti-flooding    hydrogen peroxide    hydrazine hydrate
收稿日期: 2018-04-14      出版日期: 2019-06-17
中图分类号:  O643.36  
通讯作者: 卢璐(1983-),女,高级工程师,博士,研究方向:质子交换膜燃料电池,联系地址:辽宁大连黄河路794号大连交通大学辽宁省新能源电池重点实验室(116028),E-mail:piao0215@163.com     E-mail: piao0215@163.com
引用本文:   
卢璐, 吴磊, 史继诚, 徐洪峰, 丛涛泉. PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征[J]. 材料工程, 2019, 47(6): 63-69.
LU Lu, WU Lei, SHI Ji-cheng, XU Hong-feng, CONG Tao-quan. Preparation and characterization of anti-flooding functional Pt/C catalyst for PEMFC. Journal of Materials Engineering, 2019, 47(6): 63-69.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000379      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/63
[1] 衣宝廉.燃料电池:原理·技术·应用[M].北京:化学工业出版社,2003. YI B L.Fuel cell:principle,technology application[M].Beijing Chemical Industry Press,2003.
[2] FREY T.LINARDI M. Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance[J].Electrochimica Acta,2004,50(1):99-105.
[3] 侯明,俞红梅,衣宝廉.车用燃料电池技术的现状与研究热点[J].化学进展,2009,21(11):2319-2332. HOU M,YU H M,YI B L.Status and research hotspot of vehicle fuel cell technology[J]. Progress in Chemistry,2009,21(11):2319-2332.
[4] 王诚,赵波,张剑波.质子交换膜燃料电池膜电极的关键技术[J].科技导报,2016,34(6):62-68. WANG C,ZHAO B,ZHANG J B.Key techniques for membrane electrode of proton exchange membrane fuel cell[J].Science and Technology Review,2016,34(6):62-68.
[5] 张东方.质子交换膜燃料电池用催化剂及其电极的研究进展[J].能源化工,2003,24(6):33-35. ZHANG D F.Studies on catalysts and electrodes for proton exchange membrane fuel cells[J].Energy and Chemical Indus-try,2003,24(6):33-35.
[6] 吕海峰,程年才,木士春,等.质子交换膜燃料电池Pd修饰Pt/C催化剂的电催化性能[J].化学学报, 2009,67(14):1680-1684. LV H F,CHENG N C,MU S C, et al. Electrocatalytic properties of Pd-modified Pt/C catalyst for proton exchange membrane fuel cell[J].Acta Chimica Sinica,2009,67(14):1680-1684.
[7] 郭建伟,毛宗强,徐景明.采用交流阻抗法对质子交换膜燃料电池(PEMFC)电化学行为的研究[J].高等学校化学学报, 2003, 24(8):1477-1481. GUO J W,MAO Z Q,XU J M.Study on electrochemical behavior of proton exchange membrane fuel cell (PEMFC) by AC imped-ance method[J].Acta Chimica Sinica,2003,24(8):1477-1481.
[8] WANG C Y. Fundamental models for fuel cell engineering[J]. Chemical Reviews,2004,35(50):4727-4765.
[9] KIM K H,KIM H J,LEE K Y,et al.Effect of Nafion gradient in dual catalyst layer on proton exchange membrane fuel cell performance[J].International Journal of Hydrogen Energy,2008,33(11):2783-2789.
[10] XU L, FANG C, HU J, et al.Parameter extraction and uncert-ainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation[J].International Journal of Hydrogen Energy,2017,42(4):2309-2326.
[11] SONG M,PEI P,ZHA H,et al.Water management of proton exchange membrane fuel cell based on control of hydrogen press-ure drop[J].Journal of Power Sources,2014,267(11):655-663.
[12] 侯明,吴金锋,衣宝廉,等.质子交换膜燃料电池新型静态排水结构[J].电源技术,2002, 26(3):131-133. HOU M,WU J F, YI B L,et al.New static drainage structure of proton exchange membrane fuel cell[J]. Power Engineering,2002,26(3):131-133.
[13] BRETT D J L,ATKINS S,BRANDON N P,et al. Localized impedance measurements along a single channel of a solid poly-mer fuel cell[J]. Electrochemical and Solid-State Letters,2003,6(4):A63-A66.
[14] CHA S W,KIM D,PRINZ F B, et al.Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping[J]. Journal of Power Sources,2016,161(1):191-202.
[15] LITSTER S,BUIE C R,FABIAN T,et al.Active water manag-ement for PEM fuel cells[J]. Journal of the Electrochemical Society,2007,154(10):B1049-B1058.
[1] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[2] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[3] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[4] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[5] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
[6] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[7] 金杰, 韩岁伍, 安腾, 马君杰, 张伟. CrN和CrNiN涂层在模拟质子交换膜燃料电池环境中的电化学性能及疏水性能[J]. 材料工程, 2016, 44(10): 33-40.
[8] 隋静, 胡娜, 段芳, 施冬健, 陈明清. 负载型纳米Pd-M(Ag,Cu)催化剂的制备与催化性能[J]. 材料工程, 2013, 0(5): 53-56.
[9] 刘大博, 祁洪飞, 成波. PS@Au核壳结构纳米催化剂的制备及性能研究[J]. 材料工程, 2012, 0(7): 1-4,91.
[10] 何刚. MK101催化剂受热结构及活性变化[J]. 材料工程, 2010, 0(2): 21-24.
[11] 何刚. 铜系甲醇催化剂失活前后杂质组成和晶粒结构变化[J]. 材料工程, 2010, 0(1): 69-73.
[12] 赵爱明, 张革新. 超强酸催化巯基乙酸甲酯化的分子动力学模拟[J]. 材料工程, 2008, 0(10): 336-338.
[13] 孟根图雅, 曹星辉, 贾美林, 照日格图. 纳米Au/Fe2O3-MOx催化剂的制备及低温催化氧化CO的研究[J]. 材料工程, 2008, 0(10): 356-357,362.
[14] 刘琰, 孙德智, 李磊. Fe2O3/γ-Al2O3催化剂的制备表征及其催化活性的研究[J]. 材料工程, 2007, 0(5): 19-23.
[15] 徐化明, 王锐, 国力秋, 梁吉. 单壁碳纳米管在基底表面的离散生长[J]. 材料工程, 2007, 0(3): 3-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn