Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 139-144    DOI: 10.11868/j.issn.1001-4381.2018.000383
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能
李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩
南昌大学 机电工程学院, 南昌 330031
Flexible Si/carbon nanotubes/cellulose composite anodes without adhesive and its electrochemical properties
LI Xu, SUN Xiao-gang, WANG Jie, CHEN Wei, HUANG Ya-pan, LIANG Guo-dong, WEI Cheng-cheng, HU Hao
College of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(2482 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 硅/碳复合材料作为最具潜力的下一代阳极材料,受到广泛关注。为减少硅巨大膨胀所产生的应力,避免硅纳米颗粒的粉化,提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的多壁碳纳米管(MWCNTs)纸,嵌入纳米硅制得Si/MWCNTs/纤维素复合柔性锂离子电池阳极。FESEM显示,纳米硅均匀地嵌入在MWCNTs构建的三维导电网络中,纳米硅和导电载体具有良好的接触,使得界面电阻大幅下降,同时纳米硅在电池充放电过程中具有足够的膨胀空间,保证了材料的结构稳定性和化学稳定性。电化学检测显示,其首次放电比容量达到2024 mAh/g,循环30次后比容量维持在850 mAh/g,展示出良好的循环稳定性和较高的比容量。同时,其制作工艺相比传统涂敷类阳极得以简化,可操作性高,易于实现产业化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李旭
孙晓刚
王杰
陈玮
黄雅盼
梁国东
魏成成
胡浩
关键词 纳米硅多壁碳纳米管阳极锂离子电池    
Abstract:Silicon/carbon composite materials were widely considered as the next generation and the most potential anode materials. In order to reduce the huge expansion of silicon, avoid silicon nanoparticle powder and improve the electrochemical performance of silicon based lithium ion battery, a microporous structure paper of multiwalled carbon nanotubes(MWCNTs) was prepared, and the Si/MWCNTs/cellulose composite flexible lithium ion battery anode was prepared by embedding nanoscale silicon. FESEM shows that the nano-silicons are evenly inserted in the three-dimensional conductive network constructed by MWCNTs. This results in decreased interface resistance owing to increasing contact area between silicon and MWCNTs. The high hole of the anode provides enough space for expansion of silicon in cycles. So, the structural stability and chemical stability of the electrodes significantly are guaranteed. Electrochemical tests demonstrate that the first discharge capacity reaches 2024 mAh/g, and the capacity is still maintained at 850 mAh/g after 30 cycles, which shows good cyclic stability and high specific capacity. The unique electrodes show excellent electrochemical performance. The fabrication process of the electrode is much simpler than traditional coating process, strong maneuverability and a satisfactory prospect for industrial applications.
Key wordsnano silicon    multi walled carbon nanotube    anode    lithium ion battery
收稿日期: 2018-04-04      出版日期: 2020-04-23
中图分类号:  TM911.1  
通讯作者: 孙晓刚(1957-),男,教授,主要从事碳纳米管和锂离子电池方面的研究工作,联系地址:江西省南昌市红谷滩新区学府大道999号南昌大学前湖校区机电工程学院(330038),E-mail:xiaogangsun@163.com     E-mail: xiaogangsun@163.com
引用本文:   
李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
LI Xu, SUN Xiao-gang, WANG Jie, CHEN Wei, HUANG Ya-pan, LIANG Guo-dong, WEI Cheng-cheng, HU Hao. Flexible Si/carbon nanotubes/cellulose composite anodes without adhesive and its electrochemical properties. Journal of Materials Engineering, 2020, 48(4): 139-144.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000383      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/139
[1] BEAULIEU L Y,HATCHARD T D,BONAKDARPOUR A,et al. Reaction of Li with alloy thin films studied by in situ AFM[J]. Journal of the Electrochemical Society,2003,150(11):1457-1464.
[2] TAKESHI W,TETSU I,KUNIO Y,et al. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process[J]. Nano Letters,2014,14:4505-4510.
[3] 宋磊,陈纪强,范汶鑫,等. 电化学处理对碳纤维表面加载碳纳米管的影响机理[J]. 材料工程,2017,45(11):19-26. SONG L,CHEN J Q,FAN W X,et al. Influencing mechanism of electrochemical treatment on preparation of CNTs-grafted on carbon fibers[J]. Journal of Materials Engineering,2017,45(11):19-26.
[4] LV Q L,LIU Y,MAT Y,et al. Hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(42):23501-23506.
[5] CAO X,CHUAN X,LI S,et al. Hollow silica spheres embedded in a porous carbon matrix and its superior performance as the anode for lithium-ion batteries[J]. Particle & Particle Systems Characterization,2016,33(2):110-117.
[6] MA T,YU X,LI H,et al. High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries[J]. Nano Letters,2017,17(6):3959-3964.
[7] HUANG X,YANG J,MAO S,et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries[J]. Advanced Materials,2014,26(25):4326-4332.
[8] MA H,CHENG F,CHEN J,et al. Nest-like silicon nanospheres for high-capacity lithium storage[J]. Advanced Materials,2010,19(22):4067-4070.
[9] ZHOU X Y,TANG J J,YANG J,et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta,2013,87(1):663-668.
[10] FOWLER C E,KHUSHALANI D,MANN S. Interfacial synthesis of hollow microspheres of mesostructured silica[J]. Chemical Communications,2001,19(19):2028-2029.
[11] LUO F,CHU G,XIA X,et al. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries[J]. Nanoscale,2015,7(17):7651-7658.
[12] WANG B,LI X,LUO B,et al. Approaching the downsizing limit of silicon for surface-controlled lithium storage[J]. Advanced Materials,2015,27(9):1526-1532.
[13] XIA Y,JUN L,GUO Y. Silicon-based nanomaterials for lithium-ion batteries[J]. Chinese Science Bulletin, 2012,57(32):4104-4110.
[14] DIMOV N,XIA Y,YOSHIO M. Practical silicon-based composite anodes for lithium-ion batteries:fundamental and technological features[J]. Journal of Power Sources,2007,171(2):886-893.
[15] MAROM R,AMALRAJ S F,LEIFER N,et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry,2011,21(27):9938-9954.
[16] BABAR A A,WANG X,IQBAL N,et al. Tailoring differential moisture transfer performance of nonwoven/polyacrylonitrile-SiO2 nanofiber composite membranes[J]. Advanced Materials Interfaces,2017,4(15):1700062.
[17] 杨旭东,陈亚军,师春生,等. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017,45(9):93-100. YANG X D,CHEN Y J,SHI C S,et al. Effect of ball-milling process on the microstructure and mechanical properties of in-situ synthesized carbon nanotube reinforced aluminum composites[J]. Journal of Materials Engineering,2017,45(9):93-100.
[18] YANG Y,WANG Z,ZHOU Y,et al. Synthesis of porous Si/graphite/carbon nanotubes@C composites as a practical high-capacity anode for lithium-ion batteries[J]. Materials Letters,2017,199:84-87.
[19] SALAJKOVA M,VALENTINI L,ZHOU Q,et al. Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes[J]. Composites Science & Technology,2013,87(9):103-110.
[20] GAO H,HOU F,ZHENG X,et al. Electrochemical property studies of carbon nanotube films fabricated by CVD method as anode materials for lithium-ion battery applications[J]. Vacuum,2015,112:1-4.
[21] KIM Y L,SUN Y K,LEE S M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimica Acta,2008,53(13):4500-4504.
[22] 刘珍红,孙晓刚,陈珑,等. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程,2018,46(1):99-105. LIU Z H,SUN X G,CHEN L,et al. Performance of lithium ion batteries with carbon nanotube paper/nano silicon composite electrode[J]. Journal of Materials Engineering,2018,46(1):99-105.
[23] 易健宏,杨平,沈韬. 碳纳米管增强金属基复合材料电学性能研究进展[J]. 复合材料学报,2016,33(4):689-703. YI J H,YANG P,SHEN T. Research progress of electrical properties for carbon nanotubes reinforce metal matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(4):689-703.
[24] ZHOU Z,XU Y,LIU W,et al. High capacity Si/DC/MWCNTs nanocomposite anode materials for lithium ion batteries[J]. Journal of Alloys & Compounds,2010,493(1/2):636-639.
[25] ZHAO T K, JI X L, BI P,et al. In situ synthesis of interlinked three-dimensional graphene foam/polyaniline nanorod supercapacitor[J]. Electrochimica Acta,2017,230:342-349.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[3] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[4] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[5] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[6] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[7] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[8] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[9] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[10] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[11] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[12] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[13] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[14] 刘英, 张永安, 王卫, 李冬生, 王俊伟, 梁玉冬. Fe对(Cu-Ni-Fe)-xNiFe2O4复合惰性阳极低温铝电解成膜机制的影响[J]. 材料工程, 2019, 47(2): 107-114.
[15] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn