Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 11-18    DOI: 10.11868/j.issn.1001-4381.2018.000395
  综述 本期目录 | 过刊浏览 | 高级检索 |
超支化聚合物(HBPs)改性环氧树脂的研究进展
陈珂龙, 张桐, 崔溢, 王智勇
中国航发北京航空材料研究院 隐身材料重点实验室, 北京 100095
Progress of hyperbranched polymers (HBPs) as modifiers in epoxy resins
CHEN Ke-long, ZHANG Tong, CUI Yi, WANG Zhi-yong
Key Laboratory of Science and Technology on Stealth Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(856 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 超支化聚合物在不影响工艺性的前提下对环氧树脂有明显的增强、增韧作用。本文主要概述了超支化聚合物对环氧树脂力学性能、耐热性能的影响,主要包括:聚酯超支化聚合物改性环氧树脂、聚酰胺/聚酰亚胺/聚乙烯亚胺超支化聚合物改性环氧树脂、有机硅超支化聚合物改性环氧树脂以及其他超支化聚合物改性环氧树脂等。此外,还指出了目前超支化聚合物改性环氧树脂的缺点以及未来的发展方向。当前限制HBPs在环氧树脂改性领域内大规模应用的主要缺点在于大多数HBPs合成步骤繁琐复杂,合成成本较高。鉴于此,在未来随着更简单、绿色的合成方法的出现,HBPs在其他新兴领域以及改性树脂中的应用会越来越广泛。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈珂龙
张桐
崔溢
王智勇
关键词 超支化聚合物环氧树脂改性增强增韧    
Abstract:Hyperbranched polymers (HBPs) are a new kind of polymers used as modifiers of epoxy resins to increase their strength and toughness without affecting the processability. The influence of some HBPs on the physical properties and thermal resistance of epoxy resin was summarized in this paper, including four parts:hyperbranched polyether as an epoxy modifier, hyperbranched polyamide/polyimide/polyethyleneimine as an epoxy modifier, hyperbranched polysiloxanes as an epoxy modifier and other hyperbranched polymers as an epoxy modifier. Then the drawback of hyperbranched polymers used as modifiers of epoxy resins was revealed. In addition, more and more fascinating materials and devices based on hyperbranched polymers will be successfully developed and fabricated in the future. The main limitation of the HBPs in the field of epoxy resin modification is that the synthesis steps of most HBPs are cumbersome. Thus, in the future, with the advent of simpler, greener synthetic methods, HBPs will be more widely used in other emerging fields and modified resins.
Key wordshyperbranched polymers (HBPs)    epoxy resin    modification    strength and toughness
收稿日期: 2018-04-10      出版日期: 2019-07-19
中图分类号:  O631.1  
通讯作者: 王智勇(1965-),男,研究员,博士,研究方向为隐身材料、复合材料及树脂改性等,联系地址:北京市81信箱9号箱(100095),zywang91@163.com     E-mail: zywang91@163.com
引用本文:   
陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
CHEN Ke-long, ZHANG Tong, CUI Yi, WANG Zhi-yong. Progress of hyperbranched polymers (HBPs) as modifiers in epoxy resins. Journal of Materials Engineering, 2019, 47(7): 11-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000395      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/11
[1] WILKINSON A N, KINLOCH I A, OTHMAN R N, et al. Low viscosity processing using hybrid CNT-coated silica particles to form electrically conductive epoxy resin composites[J]. Polymer, 2016, 98:32-38.
[2] JOHNSEN B B, KIHLOCH A J, MOHAMMED R D, et al. Toughening mechanisms of nanoparticle-modified epoxy polymers[J]. Polymer, 2007, 48:530-541.
[3] EL-HADEK M A. Fracture mechanics of rubber epoxy comp-osites[J]. Metallurgical and Materials Transactions A, 2014, 45(9):4046-4054.
[4] JAJAM K C, RAHMAN M M, HOSUR M V, et al. Fracture behavior of epoxy nanocomposites modified with polyol diluent and amino-functionalized multi-walled carbon nanotubes:a load-ing rate study[J]. Composites Part A:Applied Science and Manufacturing, 2014, 59:57-69.
[5] KHARE K S, KHAHBAZ F, KHARE R. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites:role of strengthening the interfacial interactions[J]. ACS Applied Materials & Interfaces, 2014, 6(9):6098-6110.
[6] DONG L, ZHOU W, SUI X, et al. Thermal, mechanical, and dielectric properties of epoxy resin modified using carboxyl-terminated polybutadiene liquid rubber[J]. Journal of Elastomers and Plastics, 2016, 49(4):1-17.
[7] DINESH K K, KOTHANDARAMAN B. Modification of (DGEBA) epoxy resin with maleated depolymerised natural rub-ber[J]. Express Polymer Letters, 2008, 2(4):302-311.
[8] RATNA D, BANTHIA A K. Rubber toughened epoxy[J]. Macromolecular Reasearch, 2004, 12(1):11-21.
[9] SOARES B G, LEYVA M E, MOREIRA V X, et al. Morph-ology and dielectric properties of an epoxy network modified by end-functionalized liquid polybutadiene[J]. Journal of Polymer Science Part B:Polymer Physics, 2004, 42(22):4053-4062.
[10] BARCIA F L, AMARAL T P, SOARES B G. Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene[J]. Polymer, 2003, 44(19):5811-5819.
[11] JACQUES N S, FREDERICK J M. Effect of rubber particle size on deformation mechanisms in glassy epoxy[J]. Polymer Engi-neering and Science, 1973, 13(1):29-34.
[12] ZHANG D, LIU C, CHEN S, et al. Highly efficient prepa-ration of hyperbranched epoxy resins by UV-initiated thiol-ene click reaction[J]. Progress in Organic Coatings, 2016, 101:178-185.
[13] BARUA S, CHATTOPADHYAY P, AIDEW L, et al. Infe-ction-resistant hyperbranched epoxy nanocomposite as a scaffold for skin tissue regeneration[J]. Polymer International, 2015, 64(2):303-311.
[14] ZHANG Z Y, GU A J, LIANG G Z, et al. A novel hyperb-ranched polysiloxane containing epoxy and phosphaphenanthrene groups and its multi-functional modification of cyanate ester resin[J]. Soft Materials, 2013, 11(3):346-352.
[15] ZHANG D, LIANG E, LI T, et al. The effect of molecular weight of hyperbranched epoxy resins with a silicone skeleton on performance[J]. RSC Advances, 2013(3):9522-9529.
[16] BOOGH L, PETTERSSON B, MANSON J E. Dendritic hyper-branched polymers as tougheners for epoxy resins[J]. Polymer, 1999, 40(9):2249-2261.
[17] WU H, XU J, HEIDEN P. Investigation of readily processable thermoplastic-toughened thermosets Ⅴ epoxy resin toughened with hyperbranched polyester[J]. Journal of Applied Polymer Science, 1999, 72(2):151-163.
[18] SOARES V P, RAMOS V D, RANGEL G W, et al. Hydroxy-terminated polybutadiene toughened epoxy resin:chemical modification, microstructure, and impact strength[J]. Advance in Polymer Technology, 2002, 21(1):25-32.
[19] ACHARY P, LATHA P, RAMASWAMY R. Room temper-ature curing of CTBN-toughened epoxy adhesive with elevated temperature service capability[J]. Journal of Applied Polymer Science, 1990, 41:151-162.
[20] RATNA D. Modification of epoxy resins for improvement of adhesion:a critical review[J]. Journal of Adhesion Science and Technology, 2003, 17(12):1655-1668.
[21] NIU S, YAN H, LI S, et al. Bright blue photoluminescence emitted from the novel hyperbranched polysiloxane-containing unconventional chromogens[J]. Macromolecular Chemistry and Physics, 2016, 217(10):1185-1190.
[22] LU H, FENG L, LI S, et al. Unexpected strong blue photol-uminescence produced from the aggregation of unconventional chromophores in novel siloxane-poly(amidoamine) dendrimers[J]. Macromolecules, 2015, 48(3):476-482.
[23] YANG W, PAN C. Synthesis and fluorescent properties of biodegradable hyperbranched poly(amido amine)s[J]. Macrom-olecular Rapid Communications, 2009, 30(24):2096-2101.
[24] LIU Y, GOH S H. Blue photoluminescence from hyperbranched poly(amino ester)s[J]. Macromolecules, 2005,38:9906-9909.
[25] CARR P L, DAVIES G R, FEAST W J, et al. Dielectric and mechanical characterization of aryl ester dendrimer/PET blends[J]. Polymer, 1996, 37(12):2395-2401.
[26] RATNA D, SIMON G P. Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin[J]. Polymer, 2001, 42(21):8833-8839.
[27] BLANCO I, CICALA G, FARO C L, et al. Thermomechanical and morphological properties of epoxy resins modified with functionalized hyperbranched polyester[J]. Polymer Engineering & Science, 2006, 46(11):1502-1511.
[28] OH J H, JANG J, LEE S H. Curing behavior of tetrafunctional epoxy resin/hyperbranched polymer system[J]. Polymer, 2001, 42(20):8339-8347.
[29] RATNA D, SIMON G P. Thermal and mechanical properties of a hydroxyl-functional dendritic hyperbranched polymer and trifunctional epoxy resin blends[J]. Polymer Engineering & Science,2001, 41(10):1815-1822.
[30] RATNA D, VARLEY R, RAMAN R K, et al. Studies on blends of epoxy-functionalized hyperbranched polymer and epoxy resin[J]. Journal of Materials Science, 2003, 38(1):147-154.
[31] FERNANDEZ-FRANCOS X, FOIX D, SERRA A, et al. Novel thermosets based on DGEBA and hyperbranched polymers modified with vinyl and epoxy end groups[J]. Reactive and Functional Polymers, 2010, 70(10):798-806.
[32] FERNANDEZ-FRANCOS X, SALLA J M, CADENATO A, et al. A new strategy for controlling shrinkage of DGEBA resins cured by cationic copolymerization with hydroxyl-terminated hyperbranched polymers and ytterbium triflate as an initiator[J]. Journal of Applied Polymer Science, 2008, 111(6):2822-2829.
[33] MORANCHO J M, CADENATO A, RAMIS X, et al. Thermal curing and photocuring of an epoxy resin modified with a hyper-branched polymer[J]. Thermochimica Acta, 2010, 510(1/2):1-8.
[34] MORELL M, ERBER M, RAMIS X, et al. New epoxy ther-mosets modified with hyperbranched poly(ester-amide) of differ-ent molecular weight[J]. European Polymer Journal, 2010, 46(7):1498-1509.
[35] FLORES M, FERNANDEZ-FRANCOS X, FERRANDO F, et al. Efficient impact resistance improvement of epoxy/anhydride thermosets by adding hyperbranched polyesters partially modified with undecenoyl chains[J]. Polymer, 2012, 53(23):5232-5241.
[36] FOIX D, YU Y, SERRA A, et al. Study on the chemical modi-fication of epoxy/anhydride thermosets using a hydroxyl termi-nated hyperbranched polymer[J]. European Polymer Journal, 2009, 45(5):1454-1466.
[37] FLORES M, FERNANDEZ-FRANCOS X, RAMIS X, et al. Novel epoxy-anhydride thermosets modified with a hyperbr-anched polyester as toughness enhancer Ⅰ kinetics study[J]. Thermochimica Acta, 2012, 544:17-26.
[38] DABRITZ F, VOIT B, NAGUIB M, et al. Hyperstar poly(ester-methacrylate)s as additives in thermally and photocured epoxy resins[J]. Polymer, 2011, 52(25):5723-5731.
[39] SANGERMANO M, PRIOLA A, MALUCELLI G, et al. Phenolic hyperbranched polymers as additives in cationic photop-olymerization of epoxy systems[J]. Macromolecular Materials and Engineering, 2004, 289(5):442-446.
[40] SANGERMANO M, MALUCELLI G, BONGIOVANNI R, et al. Investigation on the effect of the presence of hyperbranched polymers on thermal and mechanical properties of an epoxy UV-cured system[J]. Polymer International, 2005, 54(6):917-921.
[41] MORANCHO J M, CADENATO A, RAMIS X, et al. Effect of a hyperbranched polymer over the thermal curing and the photocuring of an epoxy resin[J]. Journal of Thermal Analysis and Calorimetry, 2011, 105(2):479-488.
[42] FOIX D, FERNANDEZ-FRANCOS X, SSALLA J M, et al. New thermosets obtained from bisphenol A diglycidyl ether and hydroxyl-ended hyperbranched polymers partially blocked with benzoyl and trimethylsilyl groups[J]. Polymer International, 2011, 60(3):389-397.
[43] SANGERMANO M, SAYED H, VOIT B. Ethoxysilyl-modified hyperbranched polyesters as mulitfunctional coupling agents for epoxy-silica hybrid coatings[J]. Polymer, 2011, 52(10):2103-2109.
[44] DENG S, YE L, FRIEDRICH K. Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temper-atures[J]. Journal of Materials Science, 2007, 42(8):2766-2774.
[45] YANG J, CHEN Z, YANG G, et al. Simultaneous improve-ments in the cryogenic tensile strength, ductility and impact str-ength of epoxy resins by a hyperbranched polymer[J]. Polymer, 2008, 49(13/14):3168-3175.
[46] LIU T, NIE Y, CHEN R, et al. Hyperbranched polyether as an all-purpose epoxy modifier:controlled synthesis and toughening mechanisms[J]. Journal of Materials Chemistry A, 2015, 3(3):1188-1198.
[47] JIN F L, PARK S J. Thermal properties and toughness perfo-rmance of hyperbranched-polyimide-modified epoxy resins[J]. Journal of Polymer Science Part B:Polymer Physics, 2006, 44(23):3348-3356.
[48] SANTIAGO D, FERNANDEZ-FRANCOS X, RAMIS X, et al. Comparative curing kinetics and thermal-mechanical properties of DGEBA thermosets cured with a hyperbranched poly(ethylen-eimine) and an aliphatic triamine[J]. Thermochimica Acta, 2011, 526(1/2):9-21.
[49] MORANCHO J M, FERNANDEZ-FRANCOS X, ACEBO C, et al. Thermal curing of an epoxy-anhydride system modified with hyperbranched poly(ethylene imine)s with different term-inal groups[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(1):645-654.
[50] ZHU M, GU A, LIANG G, et al. High-performance transp-arent solvent-free silicone resins with stable storage and low viscosity based on new hyperbranched polysiloxanes[J]. High Performance Polymers, 2013, 25(5):594-608.
[51] LIU P, GU A, LIANG G, et al. Preparation and properties of novel high performance UV-curable epoxy acrylate/hyperb-ranched polysiloxane coatings[J]. Progress in Organic Coatings, 2012, 74(1):142-150.
[52] ZHANG D H, LIANG E, CHEN S, et al. Environment-friendly synthesis and performance of a novel hyperbranched epoxy resin with a silicone skeleton[J]. RSC Adances, 2013, 3:3095-3102.
[53] LIU Q, BAO X, DENG S, et al. The investigation of methyl phenyl silicone resin/epoxy resin using epoxy-polysiloxane as compatibilizer[J]. Journal of Thermal Analysis and Calori-metry, 2014, 118(1):247-254.
[54] MORELL M, LEDERER A, RAMIS X, et al. Multiarm star poly(glycidol)-block-poly(ε-caprolactone) of different arm lengths and their use as modifiers of diglycidylether of bisphenol a thermosets[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2011, 49(11):2395-2406.
[55] MENG Y, ZHANG X, DU B, et al. Thermosets with core-shell nanodomain by incorporation of core crosslinked star polymer into epoxy resin[J]. Polymer, 2011, 52(2):391-399.
[56] NGUYEN F N, BERG J C. Novel core-shell (dendrimer) epoxy tougheners:processing and hot-wet performance[J]. Comp-osites Part A:Applied Science and Manufacturing, 2008, 39(6):1007-1011.
[57] FERDOSIAN F, YUAN Z, ANDERSON M, et al. Synthesis and characterization of hydrolysis lignin-based epoxy resins[J]. Industrial Corps and Products, 2016, 91:295-301.
[58] RADOMAN T S, DZUNUZOVIC J V, GRGUR B N, et al. Improvement of the epoxy coating properties by incorporation of polyaniline surface treated TiO2 nanoparticles previously modi-fied with vitamin B6[J]. Progress in Organic Coatings, 2016, 99:346-355.
[59] VOIT B. Hyperbranched polymers-all problems solved after 15 years of research[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2005, 43(13):2679-2699.
[60] WILMS D, STIRIBA S, FREY A. Hyperbranched polygl-ycerols:from the controlled synthesis of biocompatible polyether polyols to multipurpose applications[J]. Accounts of Chemical Research, 2010, 43(1):129-141.
[1] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[2] 胡智瑜, 马青松. 异质元素改性聚硅氧烷衍生SiOC陶瓷研究进展[J]. 材料工程, 2019, 47(7): 19-25.
[3] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[4] 赵亮, 李晓霞, 郭宇翔, 马德跃. 聚苯胺及其伪装应用研究进展[J]. 材料工程, 2019, 47(3): 42-49.
[5] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[6] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[7] 张博文, 唐禹尧, 崔玉青, 魏玮, 李小杰, 罗静, 刘晓亚. 六咪唑环三磷腈的合成及其作为环氧树脂固化促进剂的性能[J]. 材料工程, 2019, 47(1): 91-96.
[8] 杨唐俊, 袁荞龙, 黄发荣. 石英纤维增强含硅芳炔树脂复合材料的界面增强[J]. 材料工程, 2018, 46(8): 148-155.
[9] 乔栩, 林治, 林晓丹. 石墨烯的制备及其对环氧树脂导电性能的影响[J]. 材料工程, 2018, 46(7): 53-60.
[10] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[11] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 氧化石墨烯表面稀土改性机理[J]. 材料工程, 2018, 46(5): 29-35.
[12] 徐腾威, 甘国友, 严继康, 李震宇, 郭根生, 易健宏. CeO2掺杂对Pb0.92Sr0.06Ba0.02-(Sb2/3Mn1/3)0.05Zr0.48Ti0.47O3基压电陶瓷相结构及性能的影响[J]. 材料工程, 2018, 46(5): 139-144.
[13] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[14] 龙伟漾, 吴玉萍, 高文文, 洪晟. Zn-Al-Mg-RE涂层在含SRB海水中的耐腐蚀性与机理[J]. 材料工程, 2018, 46(3): 91-97.
[15] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn