Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 72-78    DOI: 10.11868/j.issn.1001-4381.2018.000409
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能
王勇刚1, 刘和剑1, 回丽2, 职山杰1, 刘海青1
1. 苏州大学 应用技术学院, 江苏 苏州 215325;
2. 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室, 沈阳 110136
High temperature tribological properties of laser cladding in-situ carbide reinforced self-lubricating wear resistant composite coating
WANG Yong-gang1, LIU He-jian1, HUI Li2, ZHI Shan-jie1, LIU Hai-qing1
1. Applied Technology College of Soochow University, Suzhou 215325, Jiangsu, China;
2. Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
全文: PDF(6922 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用激光熔覆技术在TC11合金表面成功制备NiCrBSi-Ti3SiC2-CaF2-WC耐磨自润滑涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)分析熔覆层的物相及微观组织;利用显微硬度仪对其硬度进行了测量。分别在室温(25℃),300℃和600℃条件下对涂层进行干滑动摩擦磨损实验,并分析其磨损机理。结果表明:涂层主要由γ-Ni共晶相,M23C6,TiC,(Ti,W)C,Ti5Si3硬质相以及少量的Ti3SiC2,CaF2,TiF3润滑相组成。激光熔覆层的显微硬度大幅度提高,显微硬度平均值为863.63HV0.2,约为基体的2.46倍,熔覆层总体摩擦因数和磨损率明显低于基体,在300℃条件下,涂层具有最低的摩擦因数(0.275)和磨损率(4.8×10-5mm3·N-1·m-1)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王勇刚
刘和剑
回丽
职山杰
刘海青
关键词 激光熔覆TC11涂层高温摩擦磨损    
Abstract:The NiCrBSi-Ti3SiC2-CaF2-WC self-lubricating anti-wear composite coating was fabricated on TC11 alloy substrate by laser cladding. The phase compositions and microstructure were invest-igated by X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Microhardness was measured with a microhardness tester. Tribological proper-ties of the fabricated composite coatings were evaluated under dry sliding condition at room-temper-ature (25℃), 300℃ and 600℃, and the wear mechanism was analyzed. The results show that the mi-crostructure of the composite coatings consists of γ-Ni eutectic phase, M23C6,TiC, (Ti,W)C,Ti5Si3 hard phase and some Ti3SiC2,CaF2,TiF3 lubricating phase. The microhardness of laser cladding layer is improved greatly. The average microhardness of the laser cladding coating is 863.63HV0.2, which is 2.46 times of the matrix. The friction coefficient and wear rate are lower than that of the substrate. The lowest friction coefficient and wear rate are 0.275 and 4.8×10-5mm3·N-1·m-1 at 300℃, respectively.
Key wordslaser cladding    TC11    coating    high temperature friction and wear
收稿日期: 2018-04-13      出版日期: 2019-05-17
中图分类号:  TG665  
通讯作者: 回丽(1965-),女,博士,教授,主要从事金属材料性能研究,联系地址:辽宁省沈阳市道义南大街37号沈阳航空航天大学航空制造工艺数字化国防重点学科实验室(110136),E-mail:syhuili@163.com     E-mail: syhuili@163.com
引用本文:   
王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
WANG Yong-gang, LIU He-jian, HUI Li, ZHI Shan-jie, LIU Hai-qing. High temperature tribological properties of laser cladding in-situ carbide reinforced self-lubricating wear resistant composite coating. Journal of Materials Engineering, 2019, 47(5): 72-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000409      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/72
[1] 林松盛,周克崧,代明江,等. 钛合金表面Ti-TiN-Zr-ZrN多层膜制备及性能[J]. 材料工程, 2017, 45(6):31-35. LIN S S, ZHOU K S, DAI M J, et al. Preparation and properties of Ti-TiN-Zr-ZrN multilayer films on titanium alloy surface[J]. Journal of Materials Engineering,2017,45(6):31-35.
[2] ZUMBO S, LEOFANTI J, CORRADI S, et al. Design of amall deployable satellite[J]. Acta Astronautica, 2003, 53(4/10):533-540.
[3] WENG F, CHEN C Z, YU H J. Research status of laser cladding on titanium and its alloys:a review[J]. Materials & Design, 2014, 58:412-425.
[4] WANG L, LI X X, ZHOU Y, et al. Relations of counterface materials with stability of tribo-oxide layer and wear behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Tribology International,2015,91:246-257.
[5] HUANG C B, DU L Z, ZHANG W G. Preparation and charac-terization of atmospheric plasma-sprayed NiCr/Cr3C2-BaF2·CaF2 composite coating[J]. Surface and Coatings Technology, 2009, 203(20/21):3058-3065.
[6] 韩杰阁,陈蔚泽,张浩,等. 钛合金表面耐磨性能及抗氧化性能的研究现状[J]. 电焊机, 2017,47(3):73-78. HAN J G, CHEN W Z, ZHANG H, et al. Research status of wear resistance and oxidation resistance of titanium alloy[J]. Electric Welding Machine, 2017, 47(3):73-78.
[7] WANG A H, ZHANG X L, ZHANG X F, et al. Ni-based alloy/submicron WS2 self-lubricating composite coating synthesized by Nd:YAG laser cladding[J]. Materials Science and Engineering:A, 2008, 475(1/2):312-318.
[8] ZHAO Z, CHEN J, TAN H, et al. Evolution of plastic deform-ation and its effect on mechanical properties of laser additive repa-ired Ti64ELI titanium alloy[J].Optics & Laser Technology,2017,92:36-43.
[9] LIU X B, MENG X J, LIU H Q, et al. Development and chara-cterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy[J]. Materials & Design, 2014, 55(6):404-409.
[10] PAUL C P, MISHRA S K, TIWARI P, et al. Solid-particle erosion behavior of WC/Ni composite clad layers with different contents of WC particles[J]. Optics & Laser Technology, 2013, 50:155-162.
[11] 董世运,闫世兴,徐滨士,等. 铸铁件激光熔覆NiCuFeBSi合金组织及力学性能[J]. 中国激光, 2012, 39(12):67-73. DONG S Y, YAN S X, XU B S, et al. Microstructure and mec-hanical property of NiCuFeBSi alloy with laser cladding on subs-trate of gray cast irons[J]. Chinese Journal of Lasers, 2012, 39(12):67-73.
[12] 毛星. H13钢耐磨减摩激光熔覆层材料及再制造研究[D]. 武汉:武汉理工大学, 2014. MAO X. Study on laser cladding wear-resistance antifriction material on H13 steel and remanufacturing[D]. Wuhan:Wuhan University of Technology, 2014.
[13] ZENG X, TAO Z, ZHU B, et al. Investigation of laser cladding ceramic-metal composite coatings:processing modes and mech-anisms[J]. Surface and Coatings Technology,1996,79(1):209-217.
[14] 刘秀波,王勉,乔世杰,等. TA2合金激光熔覆钛基自润滑耐磨复合涂层的高温摩擦学性能[J]. 摩擦学学报, 2018, 38(3):283-290. LIU X B, WANG M, QIAO S J, et al. High temperature tribo-logical properties of laser cladding titanium matrix self-lubri-cating wear resistant composite coating on TA2 alloy[J]. Tribo-logy, 2018, 38(3):283-290.
[15] LU X L, LIU X B, YU P C, et al. Synthesis and character-ization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding[J]. Opt-ics & Laser Technology, 2016, 78:87-94.
[16] ZHANG X F, ZHANG X L, WANG A H, et al. Microstruct-ure and properties of HVOF sprayed Ni-based submicron WS2/CaF2, self-lubricating composite coating[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1):85-92.
[17] WANG X Y, ZHOU S F, DAI X Q, et al. Evaluation and mec-hanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64:234-241.
[18] YAN H, ZHANG J, ZHANG P L, et al. Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold[J]. Surface and Coatings Te-chnology, 2013, 232:362-369.
[19] 周圣丰,戴晓琴,郑海忠. 激光熔覆与激光-感应复合熔覆WC-Ni60A涂层的结构与性能特征[J]. 机械工程学报, 2012, 48(7):113-118. ZHOU S F, DAI X Q, ZHENG H Z. Characteristics on stru-cture and properties of WC-Ni60A coating by laser cladding and laser-induction hybrid cladding[J]. Journal of Mechanical Engineering, 2012, 48(7):113-118.
[20] LIU X B, ZHENG C, LIU Y F, et al. A comparative study of laser cladding high temperature wear-resistant composite coating with the addition of self-lubricating WS2 and WS2/(Ni-P) enca-psulation[J]. Journal of Materials Processing Technology, 2013, 213(1):51-58.
[21] 俞友军,周健松,陈建敏,等. 激光熔覆NiCr/Cr3C2-Ag-BaF2/CaF2金属基高温自润滑耐磨覆层的组织结构及摩擦学性能[J]. 中国表面工程, 2010, 23(3):64-69. YU Y J, ZHOU J S, CHEN J M, et al. Microstructure and tribological behavior of laser cladding NiCr/Cr3C2-Ag-BaF2/CaF2 self-lubrication wear-resistant metal matrix composite coat-ing[J]. China Surface Engineering, 2010, 23(3):64-69.
[22] LIU X B, LIU H Q, MENG X J, et al. Effects of aging treat-ment on microstructure and tribological properties of nickel-based high-temperature self-lubrication wear resistant composite coatings by laser cladding[J]. Materials Chemistry and Physics, 2014, 143(2):616-621.
[1] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[2] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[3] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[4] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[5] 高海涛, 王建江, 李泽. 基于超材料设计的钡铁氧体吸波涂层研究[J]. 材料工程, 2019, 47(1): 70-76.
[6] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基呋喃衍生物在有机涂层中的应用[J]. 材料工程, 2019, 47(1): 42-49.
[7] 崔永静, 郝晶莹, 王长亮, 宇波, 汤智慧. 树脂基复合材料表面爆炸喷涂铝涂层性能研究[J]. 材料工程, 2018, 46(6): 120-124.
[8] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[9] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[10] 马良来, 高乐, 胡建宝, 乔振杰, 董绍明. 温度对CVD法在纤维表面制备BN涂层的影响[J]. 材料工程, 2018, 46(4): 31-37.
[11] 王晨, 王魁, 肖小波, 丁浩, 汪炳叔, 毛朝武, 张维林, 金钢南. 钨酸钠对取向硅钢绝缘涂层性能的影响[J]. 材料工程, 2018, 46(4): 51-57.
[12] 王朴, 杜继涛. 电流密度对水热电化学沉积HA涂层性能的影响[J]. 材料工程, 2018, 46(4): 58-65.
[13] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[14] 龙伟漾, 吴玉萍, 高文文, 洪晟. Zn-Al-Mg-RE涂层在含SRB海水中的耐腐蚀性与机理[J]. 材料工程, 2018, 46(3): 91-97.
[15] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn