Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 54-60    DOI: 10.11868/j.issn.1001-4381.2018.000423
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于焊道尺寸控制的电弧增材成形高氮奥氏体不锈钢与316L不锈钢交织结构
姚祥宏1, 周琦2, 王克鸿2, 章晓勇2
1. 苏州热工研究院有限公司, 江苏 苏州 215004;
2. 南京理工大学材料科学与工程学院, 南京 210094
Mix structure of high nitrogen austenitic stainless steel and 316L stainless steel formed by wire and arc additive manufacturing based on size controlling of beads
YAO Xiang-hong1, ZHOU Qi2, WANG Ke-hong2, ZHANG Xiao-yong2
1. Suzhou Nuclear Power Research Institute Co., Ltd., Suzhou 215004, Jiangsu, China;
2. School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
全文: PDF(4385 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用高氮奥氏体钢与316L不锈钢丝材,对高氮奥氏体不锈钢熔覆焊道、单道多层、单层多道表面成形特性进行分析,筛选适宜的工艺参数。通过控制两种材料焊道尺寸,获得最适用于成形异材交织结构的工艺参数。利用不同道间距实验得到异材焊道的最佳道间距,并采用合理路径,制备电弧增材成形交织结构。结果表明:工艺参数的变化对高氮奥氏体不锈钢焊道表面成形特性影响极大,易出现气孔;提出异材焊道几何尺寸、截面面积匹配误差法,获得最佳工艺参数:其中高氮奥氏体钢丝材的送丝速率为5.7 m/min,316L不锈钢丝材的送丝速率为5.6 m/min,焊接速率均为0.6 m/min。通过降低起弧次数,采用闭合路径,提高了异材交织结构成形精度,减少了后处理加工。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚祥宏
周琦
王克鸿
章晓勇
关键词 交织结构高氮奥氏体不锈钢成形特性几何尺寸匹配误差法路径    
Abstract:Wires of high nitrogen austenitic stainless steel and 316L stainless steel were used, the surface forming characteristics of single bead, single-bead multi-layer and single-layer multi-bead were analyzed on high nitrogen austenitic stainless steel, better process parameters were screened. The most suitable process parameters of forming mix structure were obtained by size controlling of both beads. The optimum step-over distance of both beads was obtained by different step-over distance experiments, and mix structure was formed by wire and arc additive manufacturing with a reasonable path. The results show that the varies of process parameters have a great influence on surface forming characteristics of high nitrogen austenitic stainless steel beads, which pores emerge easily on the bead surface; the matching error method on geometry size and cross section area of both beads is proposed, by which optimum process parameters are obtained. The wire-feed rate of two wires are 5.7 m/min and 5.6 m/min, welding speed are both 0.6 m/min. Forming precision of mix structure is improved by reducing the number of arcing times and adopting a closed path, in addition, post processing decr-eases.
Key wordsmix structure    high nitrogen austenitic stainless steel    forming characteristic    geometry size    matching error method    path
收稿日期: 2018-04-23      出版日期: 2020-01-09
中图分类号:  TG444  
基金资助: 
通讯作者: 周琦(1967-),男,教授,博士,研究方向为高能束流、摩擦焊、电弧增材制造,联系地址:江苏省南京市玄武区孝陵卫200号南京理工大学材料科学与工程学院(210094),E-mail:cheezhou@126.com     E-mail: cheezhou@126.com
引用本文:   
姚祥宏, 周琦, 王克鸿, 章晓勇. 基于焊道尺寸控制的电弧增材成形高氮奥氏体不锈钢与316L不锈钢交织结构[J]. 材料工程, 2020, 48(1): 54-60.
YAO Xiang-hong, ZHOU Qi, WANG Ke-hong, ZHANG Xiao-yong. Mix structure of high nitrogen austenitic stainless steel and 316L stainless steel formed by wire and arc additive manufacturing based on size controlling of beads. Journal of Materials Engineering, 2020, 48(1): 54-60.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000423      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/54
[1] XIONG J, YIN Z, ZHANG W.Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing[J].Journal of Materials Processing Technology,2016,233:100-106.
[2] DEREKAR K S.A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J].Materials Science and Technology,2018,34(8):895-916.
[3] DING D,PAN Z,CUIURI D,et al.Wire-feed additive manufacturing of metal components:technologies,developments and future interests[J].International Journal of Advanced Manufacturing Technology,2015,81(1/4):465-481.
[4] 黄丹,朱志华,耿海滨,等.5A06铝合金TIG丝材-电弧增材制造工艺[J].材料工程,2017,45(3):66-72. HUANG D,ZHU Z H,GENG H B,et al.TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J].Journal of Materials Engineering,2017,45(3):66-72.
[5] 徐健宁.智能金属结构熔焊成型技术研究[D].南昌:南昌大学,2009. XU J N.Research on smart metal structure based on welding technology[J].Nanchang:Nanchang University,2009.
[6] DING D,PAN Z,CUIURI D,et al.Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing[J].Robotics and Computer-Integrated Manufacturing,2016,39:32-42.
[7] DING D,PAN Z,CUIURI D,et al.Adaptive path planning for wire-feed additive manufacturing using medial axis transformation[J].Journal of Cleaner Production,2016,133:942-952.
[8] DING D,PAN Z,CUIURI D,et al.A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J].Robotics and Computer-Integrated Manufacturing,2015,31:101-110.
[9] LI Y,SUN Y,HAN Q,et al.Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts[J].Journal of Materials Processing Technology, 2018,252:838-848.
[10] 熊俊.多层单道GMA增材制造成形特性及熔敷尺寸控制[D].哈尔滨:哈尔滨工业大学,2014. XIONG J.Forming characteristics in multi-layer single-bead GMA additive manufacturing and control for deposition dimension[D].Harbin:Harbin Institute of Technology,2014.
[11] 张永忠,席明哲,石力开,等.激光快速成形316L不锈钢研究[J].材料工程,2002(5):22-25. ZHANG Y Z,XI M Z,SHI L K,et al.Research on laser direct deposition of 316L stainless steel[J].Journal of Materials Engineering,2002(5):22-25.
[12] 柏久阳,范成磊,杨雨晨,等.2219铝合金TIG填丝堆焊成形薄壁试样组织特征[J].焊接学报,2016,37(6):124-128. BAI J Y,FAN C L,YANG Y C,et al.Microstructures of 2219-Al thin-walled parts produced by shaped metal deposition[J].Transactions of the China Welding Institution,2016,37(6):124-128.
[13] LI Y,HAN Q,ZHANG G,et al.A layers-overlapping strategy for robotic wire and arc additive manufacturing of multi-layer multi-bead components with homogeneous layers[J].International Journal of Advanced Manufacturing Technology,2018,96(9/12):3331-3344.
[14] DING D,PAN Z,CUIURI D,et al.A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures[J].Robotics and Computer-Integrated Manufacturing,2015,34:8-19.
[15] 赵琳,田志凌,彭云,等.1Cr22Mn16N高氮钢激光焊接:Ⅰ焊接保护气体组成和热输入对焊缝氮含量及气孔性的影响[J].焊接学报,2007,28(8):89-91. ZHAO L,TIAN Z L,PENG Y,et al.Laser welding of high nitrogen steel 1Cr22Mn16N:Ⅰ influence of shielding gas composition and heat input on N-content and porosity of weld metal[J].Transactions of the China Welding Institution,2007,28(8):89-91.
[16] 赵琳.高氮钢焊接过程氮的行为及接头组织性能[D].北京:钢铁研究总院,2007. ZHAO L.Nitrogen behavior and joint microstructure and properties of high nitrogen steel during welding[D].Beijing:Central Iron & Steel Research Institute,2007.
[17] 崔博,张宏,刘佳,等.保护气体对高氮钢焊接熔滴过渡模式和气孔缺陷的影响研究[J].机械工程学报,2017,53(22):87-94. CUI B,ZHANG H,LIU J,et al.Study on the impact of the shielding gas on the droplet transfer mode and blowhole defect of high nitrogen steel welding[J].Journal of Mechanical Engineering,2017,53(22):87-94.
[1] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[2] 鹿旭飞, 林鑫, 马良, 曹阳, 黄卫东. 扫描路径对激光立体成形TC4构件热-力场的影响[J]. 材料工程, 2019, 47(12): 55-62.
[3] 张亮, 韩继光, 何成文, 郭永环, 张剑. 热循环对SnAgCu(纳米Al)/Cu焊点界面与性能影响[J]. 材料工程, 2014, 0(3): 55-59.
[4] 郎宇平, 陈海涛, 翁宇庆, 屈华鹏. 热力学计算在高氮奥氏体不锈钢研究中的应用[J]. 材料工程, 2013, 0(5): 16-22.
[5] 胥广亮, 陈国清, 周文龙, 付雪松, 任晓, 孙中刚. 等径角挤压对AZ31镁合金组织及力学性能的影响[J]. 材料工程, 2011, 0(2): 69-72.
[6] 温志勋, 岳珠峰, 朱振涛. 镍基单晶合金紧凑拉伸试样高温断裂特性的实验研究[J]. 材料工程, 2007, 0(12): 15-20.
[7] 傅洋, 曹玉玲, 王自明. 工业CT技术在铸造技术中的应用[J]. 材料工程, 1996, 0(10): 11-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn