Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 13-22    DOI: 10.11868/j.issn.1001-4381.2018.000424
  综述 本期目录 | 过刊浏览 | 高级检索 |
Inconel 625合金中析出相演变研究进展
高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉
兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Research progress in evolution of precipitated phases in Inconel 625 superalloy
GAO Yu-bi, DING Yu-tian, MENG Bin, MA Yuan-jun, CHEN Jian-jun, XU Jia-yu
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(1239 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文综述了Inconel 625合金析出相的析出与演变行为,重点介绍了该合金不同类型析出相包括γ'相、γ″相、δ相、Ni2(Cr,Mo)相以及MC,M6C,M23C6型碳化物和Laves相;阐明不同成形工艺、热处理及高温蠕变过程中析出相的析出与演化行为,论述不同类型的析出相对合金性能的影响;指出Inconel 625合金快速成形及焊接过程中产生裂纹的主要因素,并提出未来重要的发展方向是如何通过选择与控制相析出来进一步提高Inconel 625合金的热强性和热疲劳性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高钰璧
丁雨田
孟斌
马元俊
陈建军
许佳玉
关键词 Inconel 625合金析出相热处理形变高温性能    
Abstract:Precipitation and evolution behavior of phases in Inconel 625 superalloy were reviewed, and the various types of phases in the alloy were emphatically introduced, including the γ' phase, γ″ phase, δ phase, Ni2(Cr,Mo) phase, three types of MC,M6C,M23C6 carbides and Laves phase. The precipitation and evolution behavior of phases in different forming processes, heat treatment and high temperature creep were elucidated. Further, the effects of different types of phases on the properties of the alloys were discussed. The main factors causing cracks during rapid forming and welding in Inconel 625 alloy were pointed out and it was proposed that an important development direction in the future is how to improve the thermal strength and thermal fatigue properties of the Inconel 625 alloy by selecting and controlling the phase precipitation.
Key wordsInconel 625 superalloy    precipitated phase    heat treatment    deformation    high temperature performance
收稿日期: 2018-04-23      出版日期: 2020-05-28
中图分类号:  TG146.1+5  
通讯作者: 丁雨田(1962-),男,教授,博士,研究方向为镍基变形高温合金,联系地址:甘肃省兰州市七里河区兰工坪287号兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室(730050),E-mail:Dingyutian@126.com     E-mail: Dingyutian@126.com
引用本文:   
高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
GAO Yu-bi, DING Yu-tian, MENG Bin, MA Yuan-jun, CHEN Jian-jun, XU Jia-yu. Research progress in evolution of precipitated phases in Inconel 625 superalloy. Journal of Materials Engineering, 2020, 48(5): 13-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000424      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/13
[1] 张红斌. 国外Inconel 625合金的进展[J].特钢技术, 2000(3):69-80. ZHANG H B. Inconel 625 alloy progress abroad[J].Special Steel Technology, 2000(3):69-80.
[2] SHOEMAKER L E. Alloys 625 and 725:trends in properties and applications[C]//Superalloys 718, 625, 706 and various derivatives. Warrendale, PA:TMS, 2005:409-418.
[3] MITTRA J, DUBEYD J S, BANERJEE S. Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel 625[J]. Scripta Materialia, 2003, 49(12):1209-1214.
[4] EVANS N D, MAZIASZP J, SHINGLEDECKER J P, et al. Microstructure evolution of alloy 625 foil and sheet during creep at 750℃[J]. Materials Science and Engineering:A, 2008, 498(1/2):412-420.
[5] COZAR R, ROUBY M, MAYONOBE B, et al. Mechanical properties, corrosion resistance and microstructure of both regular and titanium hardened 625 alloys[C]//Superalloys 718, 625, 706 and various derivatives. Warrendale, PA:TMS, 1991:423-436.
[6] RODRIGUEZ R, HAYES R W, BERBON P B, et al. Tensile and creep behavior of cryomilled Inco 625[J]. Acta Materialia, 2003, 51(4):911-929.
[7] SUNDARARAMAN M, KUMAR L, PRASAD G E, et al. Precipitation of an intermetallic phase with Pt2Mo-type structure in alloy 625[J]. Metallurgical and Materials Transactions A, 1999, 30(1):41-52.
[8] CORTIAL F, CORRIEU J M, VERNOT-LOIER C. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625[J]. Metallurgical and Materials Transactions A, 1995, 26(5):1273-1286.
[9] SUAVE L M, CORMIER J, VILLECHAISE P, et al. Microstructural evolutions during thermal aging of alloy 625:impact of temperature and forming process[J]. Metallurgical and Materials Transactions A, 2014, 45(7):2963-2982.
[10] 贾鹏,王恩刚,鲁辉,等. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12):1573-1580. JIA P, WANG E G, LU H, et al. Effect of electromagnetic field on microstructure and mechanical property for Inconel 625 superalloy[J]. Acta Metallurgica Sinica, 2013, 49(12):1573-1580.
[11] 孙锋,梅林波,刘松锋,等. 625合金凝固偏析的理论分析[J]. 热力透平, 2016, 45(1):46-50. SUN F, MEI L B, LIU S F, et al. Theoretic analysis on solidification segregation of alloy 625[J]. Thermal Turbine, 2016, 45(1):46-50.
[12] 丁雨田,王伟,李海峰,等. 真空感应重熔GH3625合金纯净化研究[J].稀有金属材料与工程, 2018, 47(2):687-691. DING Y T, WANG W, LI H F, et al. Purification in alloy GH3625 through vacuum induction remelting[J]. Rare Metal Materials and Engineering, 2018, 47(2):687-691.
[13] 丁雨田,李海峰,王伟,等. 铸锭GH3625合金微观偏析及均匀化热处理[J]. 材料科学与工艺, 2016, 24(6):14-19. DING Y T, LI H F, WANG W, et al. Microsegregation and homogenization of GH3625 alloy ingot[J].Materials Science and Technology, 2016, 24(6):14-19.
[14] 丁雨田,孟斌,高钰璧,等. 固溶处理对GH3625合金板材组织及性能的影响[J]. 材料导报, 2018,32(2):243-248. DING Y T, MENG B, GAO Y B, et al. Effect of solution treatment on the microstructure and mechanical properties of GH3625 superalloy sheet[J]. Materials Review, 2018,32(2):243-248.
[15] 丁雨田,李海峰,王伟,等. 热处理对GH3625合金管材组织和性能的影响[J]. 材料热处理学报, 2015, 36(12):84-89. DING Y T, LI H F, WANG W, et al. Effect of heat treatment on microstructure and mechanical properties of GH3625 alloy tubes[J]. Transactions of Materials and Heat Treatment, 2015, 36(12):84-89.
[16] 方旭东,韩德培,李阳. 热处理对GH625合金热挤压管材组织及力学性能的影响[J]. 热加工工艺, 2013, 42(8):35-39. FANG X D, HAN D P, LI Y. Effect of heat treatment on microstructure and mechanical properties of GH625 alloy hot extruded pipe[J]. Hot Working Technology, 2013, 42(8):35-39.
[17] 闫士彩,程明,张士宏,等. Inconel625合金的高温高速热变形行为[J]. 材料研究学报, 2010, 24(3):239-244. YAN S C, CHENG M, ZHANG S H, et al. High-temperature high-speed hot deformation behavior of Inconel alloy 625[J]. Chinese Journal of Materials Research, 2010, 24(3):239-244.
[18] 郭青苗,李德富,郭胜利,等. GH625合金热变形过程的动态再结晶行为研究[J]. 机械工程学报, 2011, 47(6):51-56. GUO Q M, LI D F, GUO S L, et al. Research on dynamic recrystallization behavior of GH625 superalloy during hot deformation[J].Journal of Mechanical Engineering, 2011, 47(6):51-56.
[19] 郭青苗,李海涛,李德富,等. GH625合金管材热挤压成形工艺及组织演变的研究[J]. 稀有金属, 2011, 35(5):684-689. GUO Q M, LI H T, LI D F, et al. Hot extrusion moulding process and microstructure evolution of GH625 superalloy tubes[J]. Chinese Journal of Rare Metals, 2011, 35(5):684-689.
[20] 丁雨田,高钰璧,豆正义,等. GH3625合金管材冷变形行为及热处理工艺研究[J]. 材料导报, 2017, 31(10):70-76. DING Y T, GAO Y B, DOU Z Y, et al. Study on cold deformation behavior and heat treatment process of GH3625 superalloy tubes[J]. Materials Review, 2017, 31(10):70-76.
[21] 王志刚,杨玉军,田水仙,等. 冷拔变形对GH3625合金组织和性能的影响[J]. 钢铁研究学报, 2011,23(增刊2):92-95. WANG Z G, YANG Y J, TIAN S X, et al. Influence of cold drawing process on microstructures and tensile properties of alloy GH3625[J]. Journal of Iron and Steel Research, 2011,23(Suppl 2):92-95.
[22] 中国航空材料手册编委会. 中国航空材料手册[M].2版.北京:中国标准出版社, 2002. China Aeronautical Materials Handbook Compile Committee. China aeronautical materials handbook[M]. 2nd ed. Beijing:Standards Press of China, 2002.
[23] 冶军. 美国镍基高温合金[M]. 北京:科学出版社, 1978. YE J. Nickel base superalloy[M]. Beijing:Science Press, 1978.
[24] 郭建亭. 高温合金材料学(上册)[M]. 北京:科学出版社, 2010. GUO J T. Materials science and engineering for superalloys (book 1)[M]. Beijing:Science Press, 2010.
[25] MERRICK H F. Precipitation within γ' particles in nickel-base superalloys[J]. Metallurgical Transactions, 1973, 4(3):885-887.
[26] 常连华. 主要合金元素对镍基合金组织和性能的影响[J]. 汽轮机技术, 2001, 43(5):319-320. CHANG L H. Effects of main alloy elements on microstructure and properties of nickel base alloys[J].Turbine Technology, 2001, 43(5):319-320.
[27] RAIS K, KUMAR A, SHANLAR V, et al. Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements[J]. Scripta Materialia, 2004, 51(1):59-63.
[28] SONG K H, NAKATA K. Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding[J]. Materials & Design, 2010, 31(6):2942-2947.
[29] FLOREEN S, FUCHS G E, YANG W J. The metallurgy of alloy 625[C]//Superalloys 718, 625, 706 and various derivatives. Warrendale, PA:TMS,1994:13-37.
[30] BELAN J. GCP and TCP phases presented in nickel-base superalloys[J]. Materials Today Proceedings, 2016, 3(4):936-941.
[31] CIESLAK M J, HEADLEY T J, ROMING A D, et al. A melting and solidification study of alloy 625[J]. Metallurgical Transactions A, 1988, 19(9):2319-2331.
[32] XU F, LV Y, LIU Y, et al. Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process[J]. Journal of Materials Science and Technology, 2013, 29(5):480-488.
[33] 丁雨田,豆正义,高钰璧,等. 原位观察不同冷却速率下GH3625合金的凝固过程[J]. 材料导报, 2017,31(24):150-155. DING Y T, DOU Z Y, GAO Y B, et al. In-situ observation of solidification process of GH3625 superalloy at different cooling rates[J].Materials Review, 2017,31(24):150-155.
[34] 丁雨田,豆正义,高钰璧,等. 均匀化态GH3625合金熔化和凝固过程中的相变[J]. 材料研究学报, 2017, 31(11):853-859. DING Y T, DOU Z Y, GAO Y B, et al. Phase transformation during melting and solidifying process of homogenized superalloy GH3625[J]. Chinese Journal of Materials Research, 2017, 31(11):853-859.
[35] DUPONT J N, ROBINA C V, MARDER A R. Modeling solute redistribution and microstructural development in fusion welds of Nb-bearing superalloys[J]. Acta Materialia, 1998, 46(13):4781-4790.
[36] 王浩宇,董建新,张麦仓,等. 浇注温度对GH625合金铸态显微组织的影响[J]. 工程科学学报, 2015, 37(11):1469-1476. WANG H Y, DONG J X, ZHANG M C, et al. Effect of casting temperature on the microstructure of as-cast GH625 alloy[J]. Chinese Journal of Engineering, 2015, 37(11):1469-1476.
[37] 鲁世强,黄伯云,贺跃辉,等. Laves相合金的物理冶金特性[J]. 材料导报, 2003, 17(1):11-13. LU S Q, HUANG B Y, HE Y H, et al. Physical metallurgy of Laves phase alloys[J]. Materials Review, 2003, 17(1):11-13.
[38] 鲁世强,黄伯云,贺跃辉,等. Laves相合金的力学性能[J]. 材料工程, 2003(5):43-47. LU S Q, HUANG B Y, HE Y H, et al. Mechanical properties of Laves phase alloys[J]. Journal of Materials Engineering, 2003(5):43-47.
[39] HØJERSLEV C, TIEDJE N, HALD J. Segregation effects and phase developments during solidification of alloy 625[J]. Materials Science Forum, 2006, 508:373-378.
[40] 黄健成,姚润钢,姚上卫. 镍基625合金的析出转变及影响因素[J]. 材料开发与应用, 2016, 31(1):87-91. HUANG J C, YAO R G, YAO S W. Precipitation behavior of nickel-base alloy 625 and the related factors[J]. Development and Application of Materials, 2016, 31(1):87-91.
[41] 李亚敏,朱瑞明,刘洪军,等. 长期时效过程中GH625合金的析出相演变[J]. 金属热处理, 2017, 42(9):94-99. LI Y M, ZHU R M, LIU H J, et al. Evolution of precipitated phase in GH625 alloy during term aging[J]. Heat Treatment of Metals, 2017, 42(9):94-99.
[42] SHAIKH M A, AHMAD M, SHOAIB K A, et al. Precipitation hardening in Inconel* 625[J]. Materials Science and Technology, 2000, 16(2):129-132.
[43] 丁雨田,王伟,李海峰,等. GH3625合金中析出相的热力学计算[J]. 兰州理工大学学报, 2016, 42(5):1-5. DING Y T, WANG W, LI H F, et al. Thermodynamic calculation of precipitated phases in alloy GH3625[J]. Journal of Lanzhou University of Technology, 2016, 42(5):1-5.
[44] SHANKAR V, RAO K B S, MANNAN S L. Microstructure and mechanical properties of Inconel 625 superalloy[J]. Journal of Nuclear Materials, 2001, 288(2):222-232.
[45] SUNDARARAMAN M, MUKHOPADHYAY P, BANERJEE S. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys[J]. Metallurgical Transactions A, 1988, 19(3):453-465.
[46] KIRMAN I, WARRINGTON D H. The precipitation of Ni3Nb phases in a Ni-Fe-Cr-Nb alloy[J]. Metallurgical Transactions, 1970, 1(10):2667-2675.
[47] MUZYKA D R, SIMS C T, HAGELS W C. The superalloys[M]. NewYork:Wiley,1972:113-114.
[48] MATHEW M D, PALANICHAMY P, LATHA S, et al. Microstructural changes in alloy 625 due to creep and characterization using NDE techniques[J]. Transactions of the Indian Institute of Metals, 2010, 63(2/3):449-452.
[49] 陈名浩,何银秋. 镍基合金中γ″-Ni3Nb和δ-Ni3Nb等相的衍射定量相分析[J]. 冶金分析, 1989(2):1-5. CHEN M H, HE Y Q. Quantitative phase analysis of γ″-Ni3Nb、δ-Ni3Nb and other phases in superalloy GH625 by X-ray diffraction[J]. Metallurgical Analysis, 1989(2):1-5.
[50] 郭岩,侯淑芳,周荣灿. IN625合金760℃时效析出相对冲击性能的影响[J]. 动力工程学报, 2011, 31(1):75-78. GUO Y, HOU S F, ZHOU R C. Effect of precipitates on impact property of alloy Inconel 625 after aging at 760℃[J]. Journal of Chinese Society of Power Engineering, 2011, 31(1):75-78.
[51] 郭岩,侯淑芳,周荣灿. 时效对IN625合金组织结构及拉伸性能的影响[J]. 动力工程学报, 2010, 30(12):966-970. GUO Y, HOU S F, ZHOU R C. Effect of aging on microstructure and tensile properties of alloy Inconel 625[J]. Journal of Chinese Society of Power Engineering, 2010, 30(12):966-970.
[52] 丁雨田,豆正义,高钰璧,等. 长期时效对GH3625合金热挤压管组织及性能的影响[J]. 特种铸造及有色合金, 2017, 37(4):373-377. DING Y T, DOU Z Y, GAO Y B, et al. Effects of long-term aging on microstructure and mechanical properties of hot-extruded GH3625 alloy tube[J]. Special Casting and Nonferrous Alloys, 2017, 37(4):373-377.
[53] 赵宇新. GH625合金的冷变形及其对力学性能的影响[J]. 材料工程, 2000(9):36-37. ZHAO Y X. Cold deformation behaviors of GH625 alloy and their effects on the mechanical properties[J]. Journal of Materials Engineering, 2000(9):36-37.
[54] 丁雨田,高钰璧,豆正义,等. 形变诱导GH3625合金热挤压管材δ相的析出行为[J]. 金属学报, 2017,53(6):695-702. DING Y T, GAO Y B, DOU Z Y, et al. Precipitation behavior of δ phase of deformation induced GH3625 superalloy hot-extruded tube[J]. Acta Metallurgica Sinica, 2017,53(6):695-702.
[55] MATHEW M D, PARAMESWARAN P, RAO K B S. Microstructural changes in alloy 625 during high temperature creep[J]. Materials Characterization, 2008, 59(5):508-513.
[56] MATHEW M D, RAO K B S, MANNAN S L. Creep properties of service-exposed alloy 625 after re-solution annealing treatment[J]. Materials Science and Engineering:A, 2004, 372(1/2):327-333.
[57] MATHEW M D, BHANU S R K, MANNAN S L, et al. Recovery of creep properties of alloy 625 after long term service[J]. Key Engineering Materials, 1999, 171/174:537-544.
[58] MATHEW M D, RAO K B S,MANNAN S L, et al. Creep life estimation of service exposed alloy 625 ammonia cracker tubes[C]//Superalloys 718, 625, 706 and various derivatives. Warrendale, PA:TMS, 1997:805-812.
[59] SUAVE L M, CORMIER J, BERTHEAU D, et al. High temperature low cycle fatigue properties of alloy 625[J]. Materials Science and Engineering:A, 2016, 650:161-170.
[60] SUAVE L M, BERTHEAU D, CORMIER J, et al. Impact of microstructural evolutions during thermal aging of alloy 625 on its static mechanical properties[C]//MATEC Web of Conferences. Paris, France:EDP Sciences, 2014:21001.
[61] LIU D X, ZHANG X, QIN X Q, et al. High-temperature mechanical properties of Inconel-625:role of carbides and delta phase[J]. Materials Science and Technology, 2017, 33(14):1-8.
[62] 秦华,胡传顺,肖锋. Inconel 625合金堆焊层组织和性能的研究[J]. 热加工工艺, 2010, 39(17):171-172. QIN H, HU C S, XIAO F. Research on microstructure and performance of Inconel 625 alloy surfacing layer on 2.25Cr1Mo matrix[J]. Hot Working Technology, 2010, 39(17):171-172.
[63] GU Y L, TAO C H, WEI Z W, et al. Microstructural evolution and mechanical properties of TIG welded superalloy GH625[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1):100-106.
[64] 邸新杰,邢希学,王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理[J]. 金属学报, 2014,50(3):323-328. DI X J, XING X X, WANG B S. Nucleation and coarsening mechanism of δ phase in Inconel 625 deposited metal[J]. Acta Metallurgica Sinica, 2014, 50(3):323-328.
[65] 顾玉丽,魏振伟,蒋睿哲. GH625和GH536变形高温合金焊接的疲劳裂纹扩展速率分析[J]. 失效分析与预防, 2015, 10(5):274-279. GU Y L, WEI Z W, JIANG R Z. Analysis of fatigue crack growth rate of GH625 and GH536 wrought Ni-base superalloy[J].Failure Analysis and Prevention, 2015, 10(5):274-279.
[66] 赵利利,邵玲,顾玉丽,等. GH625合金氩弧焊焊接接头的疲劳裂纹扩展性能[J]. 材料热处理学报, 2016, 37(1):180-184. ZHAO L L, SHAO L, GU Y L, et al. Fatigue crack growth of gas tungsten arc weld joint of GH625 alloy[J]. Transactions of Materials and Heat Treatment, 2016, 37(1):180-184.
[67] 郭龙龙,郑华林,李悦钦,等. 热丝脉冲TIG堆焊Inconel 625的组织及性能[J]. 中国表面工程, 2016, 29(2):77-84. GUO L L, ZHENG H L, LI Y Q, et al. Microstructure and performance of Inconel 625 cladding deposited by hot wire pulsed TIG[J].China Surface Engineering, 2016, 29(2):77-84.
[68] 王顺花,陈宜,张建晓,等. Inconel 625合金堆焊管板退火过程中的组织和耐蚀性变化[J]. 金属热处理, 2015, 40(12):22-27. WANG S H, CHEN Y, ZHANG J X, et al. Evolution of microstructure and corrosion resistance of Inconel 625 alloy surfacing tube-sheet during annealing[J]. Heat Treatment of Metals, 2015, 40(12):22-27.
[69] 黄健成,姚润钢,姚上卫. 热处理对镍基625合金带极堆焊层组织及耐晶间腐蚀性能的影响[J]. 焊接技术, 2016,45(7):29-32. HUANG J C, YAO R G, YAO S W. Effect of post weld heat treatment on microstructure and intergranular corrosion resistance of strip cladding layers of nickel-base alloy 625[J]. Welding Technology, 2016,45(7):29-32.
[70] 黄健成,姚上卫,姚润钢. Nb含量对625合金带极堆焊层耐晶间腐蚀性能的影响[J]. 材料开发与应用, 2016, 31(5):36-39. HUANG J C, YAO S W, YAO R G. Influence of Nb content on IGC resistance of strip cladding metal of alloy 625[J]. Development and Application of Materials, 2016, 31(5):36-39.
[71] TAWANCY H M, ALLAM I M, ABBAS N M. Effect of Ni3Nb precipitation on the corrosion resistance of Inconel alloy 625[J]. Journal of Materials Science Letters, 1990, 9(3):343-347.
[72] 张军磊,胡强,魏鹏程,等. Inconel 625合金焊接热裂纹倾向研究[J]. 材料热处理学报, 2016,37(增刊1):68-73. ZHANG J L, HU Q, WEI P C, et al. Research on welding thermal cracking tendency of Inconel 625 alloy[J]. Transactions of Materials and Heat Treatment, 2016,37(Suppl 1):68-73.
[73] 赵霞,查向东,刘扬,等. 一种新型镍基耐蚀合金与625合金异种金属焊接接头的组织和力学性能[J]. 金属学报, 2015, 51(2):249-256. ZHAO X, ZHA X D, LIU Y, et al.Microstructure and mechanical properties of a new corrosion-resisting nickel-based alloy and 625 alloy dissimilar metal welding joint[J]. Acta Metallurgica Sinica, 2015, 51(2):249-256.
[74] 徐富家,吕耀辉,刘玉欣,等. 脉冲等离子弧快速成形Inconel 625组织性能研究[J]. 材料工程, 2012(11):6-11. XU F J, LU Y H, LIU Y X, et al. Microstructure and mechanical properties of Inconel 625 components deposited by pulsed plasma arc rapid prototyping[J].Journal of Materials Engineering, 2012(11):6-11.
[75] DEY G K, ALBERT S, SRIVASTAVA D, et al. Microstructural studies on rapidly solidified Inconel 625[J]. Materials Science and Engineering:A, 1989, 119(89):175-184.
[76] 徐富家,吕耀辉,黄瑞生,等. 沉积路径对等离子弧快速成形Inconel625合金组织及性能的影响[J]. 焊接学报, 2016, 37(8):75-78. XU F J, LÜ Y H, HUANG R S, et al. Effect of deposition path on microstructure and mechanical properties of plasma arc rapid prototyping of Inconel625 alloy[J]. Transactions of the China Welding Institution, 2016, 37(8):75-78.
[77] 徐富家,黄瑞生,雷振,等. 工艺参数对等离子弧快速成型Inconel 625合金组织的影响[J]. 焊接, 2016(9):43-46. XU F J, HUANG R S, LEI Z, et al. Effects of process parameters on Inconel 625 alloy microstructure by plasma arc rapid prototyping[J].Welding & Joining, 2016(9):43-46.
[78] 郭建亭,周兰章,秦学智. 铁基和镍基高温合金的相变规律与机理[J]. 中国有色金属学报, 2011, 21(3):476-486. GUO J T, ZHOU L Z, QIN X Z. Phase transformations and their mechanisms in Fe and Ni-base superalloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3):476-486.
[79] XU F J, LU Y H, XU B S, et al. Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition[J]. Materials & Design, 2013, 45(50):446-455.
[80] 张洁,李帅,魏青松,等. 激光选区熔化Inconel625合金开裂行为及抑制研究[J]. 稀有金属, 2015, 39(11):961-966. ZHANG J, LI S, WEI Q S, et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting[J]. Chinese Journal of Rare Metals, 2015, 39(11):961-966.
[81] 吕耀辉,徐富家,刘玉欣,等. 固溶温度对等离子快速成形Inconel625合金组织的影响[J]. 材料科学与工艺, 2013, 21(2):14-19. LÜ Y H, XU F J, LIU Y X, et al. Effect of solution temperature on the microstructure of Inconel 625 alloy fabricated by PAW rapid prototyping[J].Materials Science & Technology, 2013, 21(2):14-19.
[82] STOUDT M R, LASS E A, NG D S, et al. The influence of annealing temperature and time on the formation of δ-phase in additively manufactured Inconel 625[J]. Metallurgical and Materials Transactions A, 2018, 49(7):3028-3037.
[1] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[2] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[3] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
[4] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[5] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[6] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[7] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[8] 储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
[9] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[10] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[11] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[12] 余煜玺, 马锐, 王贯春, 张瑞谦, 彭小明. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12): 136-142.
[13] 马龙腾, 王彦峰, 狄国标, 杨永达, 黄乐庆, 李春智. Q460FRW耐火钢的组织稳定性[J]. 材料工程, 2019, 47(10): 82-89.
[14] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[15] 蔡建明, 田丰, 刘东, 李娟, 弭光宝, 叶俊青. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5): 36-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn