Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 70-76    DOI: 10.11868/j.issn.1001-4381.2018.000447
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于超材料设计的钡铁氧体吸波涂层研究
高海涛, 王建江, 李泽
陆军工程大学 先进材料研究所, 石家庄 050003
Barium ferrite microwave absorbing coating based on metamaterial design
GAO Hai-tao, WANG Jian-jiang, LI Ze
Advanced Material Institute, Army Engineering University, Shijiazhuang 050003, China
全文: PDF(2359 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本工作设计了一种基于超材料结构的钡铁氧体吸波涂层,分析了超材料的结构设计对钡铁氧体涂层吸波性能的影响,并对涂层的吸波机理进行了研究和讨论。通过仿真发现,钡铁氧体涂层经超材料设计改进后,吸波性能得到大幅增强,改进后的钡铁氧体涂层存在最佳的匹配厚度2.5mm和电阻膜方块电阻值70Ω/□,此时涂层的吸收带宽最大,并存在两个吸收峰,在8~18GHz频段内反射损耗都小于-10dB。钡铁氧体通过超材料设计改进后,吸波性能得到极大改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高海涛
王建江
李泽
关键词 钡铁氧体超材料吸波涂层吸波机理    
Abstract:A barium ferrite microwave absorbing coating based on metamaterial structure was designed. The influence of metamaterial structure on the absorbing properties of this coating was analyzed, and the absorbing mechanism of coating was studied and discussed. Through simulation, it is found that the absorbing properties of barium ferrite have been greatly enhanced with metamaterial structure. The optimum value of the coating thickness(2.5mm) and sheet resistance(70Ω/□) are unique, meanwhile, the widest absorbing bandwidth of the coating is achieved. There exist two absorption peaks and the reflection loss can reach -10dB within the frequency range of 8-18GHz. The results show that the absorbing properties of barium ferrite are improved immensely with metamaterial structure design.
Key wordsbarium ferrite    metamaterial    absorbing coating    absorbing mechanism
收稿日期: 2018-04-28      出版日期: 2019-01-16
中图分类号:  TB332  
通讯作者: 高海涛(1989-),男,博士研究生,主要从事吸波复合材料方面的研究,联系地址:河北省石家庄市新华区和平西路97号陆军工程大学石家庄校区先进材料研究所8号楼815室(050003),E-mail:gaohaitao12y1034@163.com     E-mail: gaohaitao12y1034@163.com
引用本文:   
高海涛, 王建江, 李泽. 基于超材料设计的钡铁氧体吸波涂层研究[J]. 材料工程, 2019, 47(1): 70-76.
GAO Hai-tao, WANG Jian-jiang, LI Ze. Barium ferrite microwave absorbing coating based on metamaterial design. Journal of Materials Engineering, 2019, 47(1): 70-76.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000447      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/70
[1] KOSTISHYN V G, PANINA L V, TIMOFEEV A V, et al. Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19[J]. Journal of Magnetism & Magnetic Materials, 2016, 400:327-332.
[2] SONG F, SHEN X, LIU M, et al. Formation and characterization of magnetic barium ferrite hollow fibers with high specific surface area via sol-gel process[J]. Solid State Sciences, 2010, 12(9):1603-1607.
[3] LIU J, LIU P, ZHANG X, et al. Fabrication of magnetic rubber composites by recycling waste rubber powders via a microwave-assisted in situ surface modification and semi-devulcanization process[J]. Chemical Engineering Journal, 2016, 295(73):73-79.
[4] SHEN P, LUO J, ZUO Y, et al. Effect of La-Ni substitution on structural, magnetic and microwave absorption properties of barium ferrite[J]. Ceramics International, 2016, 43(6):4846-4851.
[5] SHAYAN A, ABDELLAHI M, SHAHMOHAMMADIAN F, et al. Mechanochemically aided sintering process for the synthesis of barium ferrite:effect of aluminum substitution on microstructure, magnetic properties and microwave absorption[J]. Journal of Alloys & Compounds, 2017, 708:538-546.
[6] QIU T, LI J, GAN G, et al. Low-temperature cofired Co/Zr-Cosubstituted M-type barium ferrite[J]. Journal of Electronic Materials, 2016, 46(2):1-5.
[7] ZHANG Y, XU F, TAN G, et al. Improvement of microwave-absorbing properties of Co2Z barium ferrite composite by coating Ag nanoparticles[J]. Journal of Alloys & Compounds, 2014, 615:749-753.
[8] LI Q, PANG J, WANG B, et al. Preparation, characterization and microwave absorption properties of barium-ferrite-coated fly-ash cenospheres[J]. Advanced Powder Technology, 2013, 24(1):288-294.
[9] WANG T, PAN C, WANG Y, et al. Improvement of absorption performance for Co2Z barium ferrite composite by increasing the reflected electromagnetic wave from air-absorber interface[J]. Journal of Magnetism & Magnetic Materials, 2014, 354(3):12-16.
[10] ZHAO T, JIN W, JI X, et al. Synthesis of sandwich microstructured expanded graphite/barium ferrite connected with carbon nanotube composite and its electromagnetic wave absorbing properties[J]. Journal of Alloys & Compounds, 2017, 712:59-68.
[11] 张勇,张斌珍,段俊萍,等. 超材料在完美吸波器中的应用[J]. 材料工程,2016, 44(11):120-128. ZHANG Y, ZHANG B Z, DUAN J P, et al. Application of metamaterial in perfect absorber[J]. Journal of Materials Engineering, 2016, 44(11):120-128.
[12] 陈明东,揭晓华,张海燕. 碳纳米管复合吸波涂层微波吸收性能的模拟计算[J]. 物理学报,2014, 63(6):188-193. CHEN M D, JIE X H, ZHANG H Y. Simulation and calculation of the absorbing microwave properties of carbon nanotube composite coating[J]. Acta Phys Sin, 2014, 63(6):188-193.
[13] COSTA F, MONORCHIO A, MANARA G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces[J]. IEEE Transactions on Antennas & Propagation, 2010, 58(5):1551-1558.
[14] D'AMORE M, SANTIS V D, FELIZIANI M. Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films[J]. IEEE Transactions on Magnetics, 2012, 48(2):703-706.
[15] 郭飞,杜红亮,屈绍波,等. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备[J]. 物理学报,2015, 64(7):354-360. GUO F, DU H L, QU S B, et al. Design and fabrication of a broadband metamaterial absorber based on a dielectric and magnetic hybrid substrate[J]. Acta Phys Sin, 2015, 64(7):354-360.
[1] 黄金国, 郭宇, 赵治亚, 李雪, 邢明军, 谢镇坤. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程, 2019, 47(6): 77-81.
[2] 礼嵩明, 蒋诗才, 望咏林, 顾涧潇, 邢丽英. “超材料”结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11): 10-14.
[3] 于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44(7): 119-128.
[4] 张勇, 张斌珍, 段俊萍, 王万军. 超材料在完美吸波器中的应用[J]. 材料工程, 2016, 44(11): 120-128.
[5] 刘毅, 魏世丞, 童辉, 田浩亮, 徐滨士. 热喷涂制备吸波涂层的研究进展[J]. 材料工程, 2014, 0(9): 106-112.
[6] 周卓辉, 黄大庆, 刘晓来, 牟维琦, 康飞宇. 超材料在宽频微波衰减吸收材料中的应用研究进展[J]. 材料工程, 2014, 0(5): 91-96.
[7] 黄大庆, 康飞宇, 周卓辉, 刘翔, 丁鹤雁. 超材料结构单元轮廓法对吸波材料衰减吸收频带的拓宽与优化[J]. 材料工程, 2014, 0(11): 1-6.
[8] 马成勇, 程海峰, 唐耿平, 楚增勇, 谢炜. 三层雷达吸波涂层的吸波性能研究[J]. 材料工程, 2008, 0(1): 11-13.
[9] 于名讯, 丁文皓, 李云南, 何华辉. 毫米波/厘米波兼容吸波涂层的设计与研究[J]. 材料工程, 2007, 0(7): 12-15.
[10] 周永江, 程海峰, 曹义, 陈朝辉, 才鸿年. 单层雷达吸波材料研究[J]. 材料工程, 2006, 0(4): 8-11.
[11] 黄大庆, 哈恩华, 何山, 丁鹤雁. 宽频段雷达表面波衰减特征规律研究[J]. 材料工程, 2005, 0(3): 33-36.
[12] 王晓红, 刘俊能. 吸波涂层斜入射特性研究[J]. 材料工程, 2002, 0(12): 41-43.
[13] 黄大庆, 王智永, 刘俊能. 偶联剂对吸波涂层力学性能的影响及其作用机理的研究[J]. 材料工程, 1999, 0(9): 28-31.
[14] 王智永, 熊克敏, 陈小泉, 任淑芳. 无损检测技术在雷达波吸收材料研究中的应用[J]. 材料工程, 1998, 0(9): 46-48.
[15] 赵东林, 周万城. 纳米雷达波吸收剂的研究和发展[J]. 材料工程, 1998, 0(5): 3-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn