Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 112-118    DOI: 10.11868/j.issn.1001-4381.2018.000451
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
钼铜复合粉末的致密化及性能
孙翱魁, 刘跃军, 陈晴柔
湖南工业大学 包装与材料工程学院, 湖南 株洲 412007
Densification and properties of Mo-Cu composite powders
SUN Ao-kui, LIU Yue-jun, CHEN Qing-rou
School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China
全文: PDF(8837 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对微波辅助法制备的钼铜复合粉末进行压制烧结,研究其致密化行为及复合材料性能。结果表明:烧结温度是控制钼铜复合材料成分、微观组织及综合性能的关键因素。1100℃下烧结的钼铜复合材料Cu含量最接近设计含量,过高的烧结温度将引起铜的损耗。在较低的烧结温度下(≤ 1100℃),复合材料的力学性能和物理性能随温度的升高而升高,但是过高的烧结温度(1200℃)会引起铜相的大量损失及颗粒异常长大,从而导致复合材料密度、硬度、导电率及导热率的降低。通过优化实验参数,1100℃下的复合材料具有理想的微观结构,铜相损失较少,复合材料成分接近设计成分,钼铜两相分散较为均匀,力学性能及物理性能优异,复合材料的密度、硬度、抗弯强度、电导率及热导率分别为9.79g/cm3,229.1HV,837.76MPa,24.97×106S·m-1和176.57W·m-1·K-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙翱魁
刘跃军
陈晴柔
关键词 钼铜复合材料致密化烧结性能    
Abstract:The Mo-Cu nano-powders were synthesized by a microwave-assisted aqueous solution strategy and subsequent low-temperature hydrogen reduction process. The sintering densification behavior of Mo-Cu composite powders and the sintering properties of the composite compacts were investigated. Results show that the sintering temperature is a critical factor in the densification process of Mo-Cu composites. The shrinkage rate, density and hardness of sintered composites increase as the temperature rises. However, too high sintering temperature causes significant loss of copper phase and abnormal grain growth, resulting in decrease in density, hardness, electrical conductivity and thermal conductivity. By optimizing all the performance indicators, high performance Mo-25%Cu composites with homogeneous microstructure accompanied with good physical and mechanical properties can be obtained by sintering for 2h at 1100℃, for the actual chemical composition is highly close to the designed chemical composition. The density, hardness, bending strength, electrical conductivity and thermal conductivity are 9.79g/cm3, 229.1HV, 837.76MPa, 24.97×106S·m-1 and 176.57W·m-1·K-1, respectively.
Key wordsMo-Cu composite    densification    sintering    property
收稿日期: 2018-04-23      出版日期: 2019-01-16
中图分类号:  TF125.24  
通讯作者: 孙翱魁(1985-),男,讲师,博士,主要从事金属复合材料、纳米粉末制备等方面的研究工作,联系地址:湖南省株洲市天元区泰山西路88号湖南工业大学包装与材料工程学院(412007),E-mail:aksun@hut.edu.cn     E-mail: aksun@hut.edu.cn
引用本文:   
孙翱魁, 刘跃军, 陈晴柔. 钼铜复合粉末的致密化及性能[J]. 材料工程, 2019, 47(1): 112-118.
SUN Ao-kui, LIU Yue-jun, CHEN Qing-rou. Densification and properties of Mo-Cu composite powders. Journal of Materials Engineering, 2019, 47(1): 112-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000451      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/112
[1] JOHNSON L.Activated liquid phase sintering of W-Cu and Mo-Cu[J].International Journal of Refractory Metals and Hard Materials,2015,53:80-86.
[2] 孙翱魁,陈晴柔,刘跃军,等.钼铜复合材料研究进展[J].包装学报,2017,9(5):75-85. SUN A K,CHEN Q R,LIU Y J,et al.Research progress in molybdenum-copper composites[J]. Packaging Journal,2017,9(5):75-85.
[3] 刘林杰,崔朝探,高岭.一种新型封装材料的热耗散能力分析与验证[J].半导体技术,2016,41(8):631-635. LIU L J,CUI Z T,GAO L.Thermal dissipation analysis and verification of a novel packaging materialsemiconductor technology[J].Semiconductor Technology,2016,41(8):631-635.
[4] LEE H C,LEE B J.A study on the thermal and electrical properties of fabricated Mo-Cu alloy by spark plasma sintering method[J].Transactions of the Korean Institute of Electrical Engineers,2017,66(11):1600-1604.
[5] 成军,赵云涛,邹军涛,等.Mo/Cu扩散焊接头组织性能研究[J].热加工工艺,2016,45(5):190-191. CHENG J,ZHAO Y T,ZOU J T,et al.Investigation on microstructure and mechanical performance of diffusion bonding joint composite with Mo/Cu[J].Hot Working Technology,2016,45(5):190-191.
[6] ZHIRKOV I,PETRUHINS A,POLCIK P,et al.Generation of super-size macroparticles in a direct current vacuum arc discharge from a Mo-Cu cathode[J].Applied Physics Letters,2016,108(5):73-87.
[7] LI Z F,LIU H Y,LI A J,et al.Effect of microstructure of Mo-Cu alloy on the thermal expansion coefficient[J].Advanced Materials Research,2014,873:67-71.
[8] SEIBERT F,DÖBELI M,FOPP-SPORI D M,et al.Comparison of arc evaporated Mo-based coatings versus Cr1N1 and ta-C coatings by reciprocating wear test[J].Wear,2013,298/299:14-22.
[9] 周旭红,杨益航,龚晓叁,等.一种药型罩用钼铜复合材料及其制备方法[J].兵器材料科学与工程,2015,38(3):48-51. ZHOU X H,YANG Y H,GONG X S,et al.A kind of Mo/Cu composites and processing technology for shaped charge liner[J].Ordnance Material Science and Engineering,2015,38(3):48-51.
[10] 吴闪,朱延俊,赵梦媛,等.Co元素掺杂对CeO2基固态电解质导电行为的研究[J].材料工程,2018,46(5):133-138. WU S,ZHU Y J,ZHAO M Y,et al.Effects of Co-dopings on electrical behaviors of CeO2-based solid electrolyte[J].Journal of Materials Engineering,2018,46(5):133-138.
[11] 亢静锐,董桂霞,吕易楠,等.Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J].材料工程,2018,46(8):78-83. KANG J R,DONG G X,LYU Y N,et al.Influences of Eu2O3 doping amount and sintering temperature on properties of Al2O3-based microwave ceramic materials[J].Journal of Materials Engineering,2018,46(8):78-83.
[12] 陶静梅,洪鹏,陈小丰,等.碳纳米管增强铜基复合材料的研究进展[J].材料工程,2017,45(4):128-136. TAO J M,HONG P,CHEN X F,et al.Research progress on carbon nanotubes reinforced Cu-matrix composites[J].Journal of Materials Engineering,2017,45(4):128-136.
[13] RYU S S,KIM Y D,MOON I H. Dilatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying[J].Journal of Alloys and Compounds,2002,335(1/2):233-240.
[14] IULIAN S,CLAUSIU N,MARIN G.Influences of the elaboration conditions and addition of Ni and Co on the some properties of the W-Cu electrical contacts[J].Materials Science Forum,2011,672:276-280.
[15] CHEN P A,LUO G Q,SHEN Q,et al.Thermal and electrical properties of W-Cu composite produced by activated sintering[J].Materials & Design,2013,46(4):101-105.
[16] DORE F,LAY S,EUSTATHOPOULOS N,et al.Segregation of Fe during the sintering of doped W-Cu alloys[J].Scripta Materialia,2003,49(3):237-242.
[17] WANG D Z,YIN B Z,SUN A K,et al.Fabrication of Mo-Cu composite powders by heterogeneous precipitation and the sintering properties of the composite compacts[J].Journal of Alloys and Compounds,2016,674:347-352.
[18] KRISHNAN G,VERHEIJEN M A,BRINK G,et al.Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis[J].Nanoscale,2013,5(12):5375-5383.
[19] WEI X X,TANG J C,YE N,et al.A novel preparation method for W-Cu composite powders[J].Journal of Alloys and Compounds,2016,661:471-475.
[20] SUN A K,WANG D Z,WU Z Z,et al.Microwave-assisted synthesis of Mo-Cu nano-powders at an ultra-low temperature and their sintering properties[J].Materials Chemistry and Physics,2014,148(3):494-498.
[1] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[2] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[3] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[4] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[5] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[6] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[7] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
[8] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[9] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[10] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[11] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[12] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[13] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[14] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[15] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn