Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 128-134    DOI: 10.11868/j.issn.1001-4381.2018.000459
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
g-C3N4量子点修饰球形Bi2WO6及其光催化活性增强机制
郭莉1,2, 张开来1, 张鑫1, 赵芳丽1, 赵强1, 杨晓1, 王丹军1,2, 付峰1,2
1. 延安大学 化学与化工学院, 陕西 延安 716000;
2. 陕西省化学反应工程重点实验室, 陕西 延安 716000
g-C3N4 quantum dots decorated spherical Bi2WO6 photocatalyst and its enhanced photocatalytic activities mechanism
GUO Li1,2, ZHANG Kai-lai1, ZHANG Xin1, ZHAO Fang-li1, ZHAO Qiang1, YANG Xiao1, WANG Dan-jun1,2, FU Feng1,2
1. College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China;
2. Key Laboratory of Chemical Reaction Engineering of Shaanxi Province, Yan'an 716000, Shaanxi, China
全文: PDF(4727 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用水热法制备三维分级结构Bi2WO6,在此基础上采用浸渍-焙烧法将g-C3N4量子点成功沉积在Bi2WO6的表面,获得Z-型结构g-C3N4/Bi2WO6光催化剂。采用XRD,FE-SEM,TEM,UV-Vis-DRS测试手段对催化材料的组成、形貌和光吸收特性进行表征。以亚甲基蓝(MB)和对硝基苯酚(p-NPh)为模型污染物,考察g-C3N4量子点表面修饰对Bi2WO6光催化活性的影响。结果表明:所得Bi2WO6为三维分级多孔结构,孔尺寸约为10nm,浸渍-焙烧法可将尺寸约5nm的g-C3N4量子点沉积在其二级结构纳米片表面。Z-型结构g-C3N4/Bi2WO6光催化剂的催化活性优于纯Bi2WO6的,且10% g-C3N4/Bi2WO6(质量分数)异质光催化剂对MB的降解表观速率常数(kapp)分别为纯Bi2WO6和g-C3N4的4.5倍和5.8倍,对p-NPh的kapp分别为纯Bi2WO6和g-C3N4的2.6倍和1.6倍。O2·-是光催化过程中的主要活性物种。g-C3N4量子点与Bi2WO6形成异质结,有利于拓宽光响应范围的同时有效抑制了Bi2WO6光生电子与空穴的复合,从而提高了催化剂的活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭莉
张开来
张鑫
赵芳丽
赵强
杨晓
王丹军
付峰
关键词 三维Bi2WO6量子点修饰Z-型g-C3N4/Bi2WO6活性增强机理    
Abstract:Three-dimensional(3D) Bi2WO6 architecture was successfully synthesized via a hydr-othermal process. The g-C3N4 quantum dots(QDs) were deposited on the surface of as-synthesized 3D Bi2WO6 hierarchical structure to construct the novel Z-scheme g-C3N4/Bi2WO6 heterojunctions via a simple impregnation-calcination method. The morphology, composition and visible-absorptive properties of as-synthesized samples were characterized by XRD, FE-SEM, TEM, UV-Vis-DRS techniques. Methylene blue(MB) and p-nitrophenol(p-NPh) were selected as model pollutant to investigate the effect of g-C3N4 QDs on the photocataytic activity of Bi2WO6 nanoarchitecture. The results reveal that as-prepared Bi2WO6 exhibits the 3D architecture with the pore size of about 10nm via a simple impregnation-calcination method. g-C3N4 QDs with the size of about 5nm can be deposited on the surface of secondary nanoplate of Bi2WO6. The photocatalytic activity of Z-scheme g-C3N4/Bi2WO6 is superior to the pure g-C3N4 and Bi2WO6, and 10%g-C3N4/Bi2WO6 exhibits the best photocatalytic activity for MB and p-NPh. The apparent rate constant (kapp) for the degradation of MB is as high as 4.5 and 5.8 times, 2.6 and 1.6 times for p-NPh compared to that of pure g-C3N4 and Bi2WO6, respectively. The O2·- is the main reactive species during the photocatalytic process. The catalytic efficiency enhancement of g-C3N4/Bi2WO6 relative to Bi2WO6 or g-C3N4 can be attributed to the formation of heterojunction between g-C3N4 QDs and Bi2WO6, which suppresses the recombination of photogenerated electron/hole pairs as well as broaden the light absorption.
Key wordsthree-dimensional Bi2WO6    quantum dots decoration    Z-scheme g-C3N4/Bi2WO6    activity enhancement mechanism
收稿日期: 2018-04-24      出版日期: 2019-11-21
中图分类号:  O614.41  
基金资助: 
通讯作者: 郭莉(1976-),女,副教授,硕士,主要从事多相光催化剂的制备应用研究,联系地址:陕西省延安市宝塔区圣地路580号延安大学化学与化工学院(716000),E-mail:guoli20052017@163.com     E-mail: guoli20052017@163.com
引用本文:   
郭莉, 张开来, 张鑫, 赵芳丽, 赵强, 杨晓, 王丹军, 付峰. g-C3N4量子点修饰球形Bi2WO6及其光催化活性增强机制[J]. 材料工程, 2019, 47(11): 128-134.
GUO Li, ZHANG Kai-lai, ZHANG Xin, ZHAO Fang-li, ZHAO Qiang, YANG Xiao, WANG Dan-jun, FU Feng. g-C3N4 quantum dots decorated spherical Bi2WO6 photocatalyst and its enhanced photocatalytic activities mechanism. Journal of Materials Engineering, 2019, 47(11): 128-134.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000459      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/128
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38.
[2] 周锋,任向红,刘建友,等. 光催化降解水体有机污染物的研究进展[J].材料工程,2018,46(10):9-19. ZHOU F, REN X H, LIU J Y, et al. Development of photocatalytic degradation of organic pollutants in water[J]. Journal of Materials Engineering,2018,46(10):9-19.
[3] ZHANG C,ZHU Y. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chemistry of Materials,2005,17(13):3537-3545.
[4] ZHANG L S,WANG W Z,CHEN Z G,et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts[J]. Journals of Materials Chemistry,2007,17:2526-2532.
[5] WU L,BI J H,LI Z H,et al. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis[J]. Catalysis Today,2008,131:15-20.
[6] SHANG M,WANG W Z,SUN S M,et al. Bi2WO6 nanocrystals with high photocatalytic activities under visible light[J]. Journal of Physical Chemistry,2008,112(28):10407-10411.
[7] SHANG M,WANG W Z,XU H L. New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG[J]. Crystal Growth & Design,2009,9(2):991-996.
[8] MA D K,HUANG S M,CHEN W X,et al. Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates:controlled synthesis, photocatalytic activities, and wettability[J]. Journal of Physical Chemistry C,2009,113(11):4369-4374.
[9] ZHANG G K,LU F,LI M,et al. Synthesis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic activity for degradation of 4BS[J]. Journal of Physical Chemistry Solids,2010,71(4):579-582.
[10] ROLAND M. Semiconductor composites:strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Advanced Functional Materials,2014,24:2421-2440.
[11] QU Y Q,DUAN X F. Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chemical Society Reviews,2013,42:2568-2580.
[12] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程,2018,46(11):57-62. ZHANG X H. Preparation and photocatalytic properties of La doped Bi2WO6 nanomaterials[J]. Journal of Materials Engineering,2018,46(11):57-62.
[13] WANG H L,ZHANG L S, CHEN Z G, et al. Semiconductor heterojunction photocatalysts:design, construction, and photocatalytic performances[J]. Chemical Society Reviews,2014,43:5234-5244.
[14] ZHANG J S,WANG B,WAGN X C. Chemical synthesis and applications of graphitic carbon nitride[J]. Acta Physico-Chimica Sinca,2013,29(9):1865-1876.
[15] WANG X C, BLECHERT S. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis,2012,2(8):1596-1602.
[16] LI X N,HUANG R K,HU Y H,et al. A templated method to Bi2WO6 hollow microsphere and their conversion to double-shell Bi2O3/Bi2WO6 hollow microsphere with improved performance[J]. Inorganic Chemistry,2012,51(11):6245-6250.
[17] GUI M S,WANG P F,YUANG D,et al. Synthesis and visible-light photocatalytic activity of Bi2WO6/g-C3N4 composite photocatalysts[J]. Chinese Journal of Inorganic Chemistry,2013,29(10):2057-2064.
[18] WANG D J,ZHEN Y Z,XUE G L,et al. Synthesis of mesoporous Bi2WO6 architectures and their gas sensitivity to ethanol[J]. Journal of Materials Chemistry C,2013(26):4153-4162.
[19] WANG D J,XUE G L,ZHEN Y Z,et al. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities[J]. Journal of Materials Chemistry,2012,22(11):4751-4758.
[20] WANG D J,GUO L,ZHEN Y Z,et al. AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue[J].Journal of Materials Chemistry A,2014,2(30):11716-11727.
[21] HIRAKAWA T,KAMAT P V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation[J]. Journal American Chemistry Society,2005,127(11):3928-3934.
[22] LI M L,ZHANG L X,FAN X Q,et al. Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composite under visible light[J]. Journal of Materials Chemistry A,2015,3(9):5189-5196.
[1] 呼世磊, 刘盼, 崔燚, 倪洁, 吕东风, 魏恒勇, 卜景龙. P123对多孔TiN粉体孔结构及电化学性能的影响[J]. 材料工程, 2019, 47(9): 93-100.
[2] 王丹军, 申会东, 郭莉, 张洁, 付峰. 三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响[J]. 材料工程, 2016, 44(2): 8-16.
[3] 闫鸿浩, 王胜杰, 李晓杰, 吴林松. 氧气含量比变化对气相爆轰合成纳米二氧化钛的影响[J]. 材料工程, 2013, 0(6): 82-86.
[4] 龚晓钟, 汤皎宁, 李均钦, 梁文涛. 非水体系电沉积稀土填充半导体热电材料Bi2Sb3Lax及其电性能研究[J]. 材料工程, 2008, 0(5): 29-33,38.
[5] 龚晓钟, 汤皎宁, 李均钦, 周莉, 张宇, 辛亚飞. 电化学方法制备单一稀土金属钆薄膜[J]. 材料工程, 2007, 0(1): 37-41,46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn