Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 127-134    DOI: 10.11868/j.issn.1001-4381.2018.000496
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能
张航1, 路媛媛2, 王涛1, 鲁亚冉1, 刘德健1
1. 华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074;
2. 湖北工业大学 工程技术学院, 武汉 430068
Impact toughness and wear property of WC/H13-Inconel625 composites by laser cladding
ZHANG Hang1, LU Yuan-yuan2, WANG Tao1, LU Ya-ran1, LIU De-jian1
1. State Key Laboratory of Material Processing and Die Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
2. School of Engineering Technology, Hubei University of Technology, Wuhan 430068, China
全文: PDF(17444 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对传统颗粒增强复合材料韧性较差的问题,以WC/H13为增强区材料,Inconel625为韧化区材料,采用激光熔覆的方法制备空间夹层分布的结构韧化复合材料。借助光学显微镜、超景深三维显微镜、扫描电子显微镜分析复合材料及其冲击断口的微观结构与组织,利用夏比冲击试验机、摩擦磨损试验机研究复合材料的冲击韧性与磨损性能。结果表明:增强区为20%(体积分数,下同)WC/H13复合材料,以WC颗粒和反应生成的碳化物M6C为主要增强相;韧化区为Inconel625合金,主要组织为柱状晶、树枝晶和沉淀相。Inconel625平均硬度为230.5HV,WC/H13硬度由强韧界面向中心区域逐渐升高到402HV。结构韧化复合材料的平均冲击功为13.8J/cm2,是传统10% WC/H13复合材料的5.5倍。在室温干滑动磨损条件下,结构韧化复合材料的耐磨性达到传统10% WC/H13复合材料相同水平,是淬火态H13钢的5倍,结构韧化复合材料的平均摩擦因数为传统10% WC/H13复合材料的81%,淬火态H13钢的80%,具有良好的减摩效果与耐磨性。结构韧化可以在保证优异耐磨性的同时,大幅度提高颗粒增强复合材料的冲击韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张航
路媛媛
王涛
鲁亚冉
刘德健
关键词 激光熔覆复合材料结构韧化冲击韧性耐磨性    
Abstract:To improve the poor toughness of traditional particulate reinforced composites, microstructurally toughened composites with WC/H13 as reinforced region and Inconel625 as toughened region were prepared by laser cladding. The microstructure of composites and impact fracture were analysed by optical microscopy, ultra-depth 3D microscope and scanning electron microscopy. The impact toughness and wear property of composites were investigated by Charpy impact testing machine and friction-abrasion testing machine. The results show that the reinforced region of 20% (volume fraction,the same below)WC/H13 is reinforced by WC particles and M6C carbides while the toughened region of Inconel625 alloy is mainly composed of columnar dendrite crystals and precipitated phases. The average hardness of Inconel625 is 230.5HV, while the hardness of WC/H13 is gradually increased to 402HV from the interface to the center area. The average impact energy of microstructurally toughened composites is 13.8J/cm2, which is 5.5 times of traditional 10% WC/H13. In the condition of dry sliding wear at room temperature, the wear resistance of microstructurally toughened composites is comparable to traditional 10% WC/H13 and 5 times of quenched H13 steel. The average friction coefficient of microstructurally toughened composites is 81% of traditional 10% WC/H13 and 80% of quenched H13 steel, which indicates excellent anti-wear and wear resistant property. By microstructurally toughening, the impact toughness of particulate reinforced composites can be substantially improved with excellent wear resistant property ensured.
Key wordslaser cladding    composite material    microstructurally toughened    impact toughness    wear resistance
收稿日期: 2018-05-03      出版日期: 2019-04-19
中图分类号:  TN249  
通讯作者: 刘德健(1978-),男,副教授,博士,主要从事激光焊接与激光表面改性方面的研究,联系地址:湖北省武汉市洪山区华中科技大学东三楼206(430074),E-mail:djliu@hust.edu.cn     E-mail: djliu@hust.edu.cn
引用本文:   
张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
ZHANG Hang, LU Yuan-yuan, WANG Tao, LU Ya-ran, LIU De-jian. Impact toughness and wear property of WC/H13-Inconel625 composites by laser cladding. Journal of Materials Engineering, 2019, 47(4): 127-134.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000496      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/127
[1] 王成彪.摩擦学材料及表面工程[M].北京:国防工业出版社,2012:156-157. WANG C B.Tribological materials and surface engineering[M].Beijing:National Defense Industry Press,2012:156-157.
[2] 杨胶溪,张健全,常万庆,等.激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J].材料工程,2016,44(6):110-116. YANG J X,ZHANG J Q,CHANG W Q,et al.High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J].Journal of Materials Engineering,2016,44(6):110-116.
[3] LEE Y T R,ASHRAFIZADE H,FISHER G,et al.Effect of type of reinforcing particles on the deposition efficiency and wear resistance of low-pressure cold-sprayed metal matrix composite coatings[J].Surface & Coatings Technology,2017,324:190-200.
[4] MIRACLE D B.Metal matrix composites-from science to techn-ological significance[J].Composites Science & Technology,2005,65(15/16):2526-2540.
[5] 张玉波,郭荣鑫,夏海廷,等.WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J].材料工程,2017,45(1):85-92. ZHANG Y B,GUO R X,XIA H T,et al.Effect of WCp content on fatigue crack growth behavior of powder metallurgy Cu/WCp composites[J].Journal of Materials Engineering,2017,45(1):85-92.
[6] YE F X,HOJAMBERDIEY M,XU Y H,et al.Volume fraction effect of V8C7 particulates on impact toughness and wear performance of V8C7/Fe monolithic composites[J].Journal of Materials Engineering & Performance,2014,23(4):1402-1407.
[7] 张宁.WC颗粒增强钢基复合材料的组织及性能研究[D].徐州:中国矿业大学,2015. ZHANG N.Study on the microstructure and property of WC particulates reinforced steel matrix composites[D].Xuzhou:China University of Mining and Technology,2015.
[8] NARDONE V C,STRIFE J R,PREWO K M.Microstructurally toughened particulate-reinforced aluminum matrix composites[J].Metallurgical Transactions A,1991,22(1):171-182.
[9] 杨少锋,张炎,蔡云杰,等.三维网络结构Al2O3陶瓷/高铬铸铁复合材料干摩擦磨损性能[J].复合材料学报,2014,31(3):683-691. YANG S F, ZHANG Y,CAI Y J,et al.Dry friction and wear properties of 3D-meshy Al2O3 ceramic reinforced high chromium iron composites[J].Acta Materiae Compositae Sinica,2014,31(3):683-691.
[10] QING S Y,ZHANG G D.Preparation of high fracture perfo-rmance SiCp-6061A1/6061A1 composite[J].Materials Science & Engineering:A,2000,279(1/2):231-236.
[11] 赵馨月.陶瓷颗粒增强钢基复合材料/钢三维互穿网络结构材料的制备及性能初探[D].昆明:昆明理工大学,2016. ZHAO X Y.Preparation and investigation of 3D-MMCs/steel composites with interpenetrating Bi-continuous structure[D].Kunming:Kunming University of Science and Technology,2016.
[12] CURREY J D,KOHN A J.Fracture in the crossed-lamellar structure of conus shells[J].Journal of Material Science,1976,11(9):1615-1623.
[13] 刘德建,陈彦宾,李福泉,等.激光熔注法制备WC颗粒增强金属基复合材料层[J].中国激光,2008,35(7):1083-1086. LIU D J,CHEN Y B,LI F Q,et al.WC particulate reinforced metal matrix composites layers produced by laser melt injection[J].Chinese Journal of Lasers,2008,35(7):1083-1086.
[14] 郭龙龙,郑华林,李悦钦,等.热丝脉冲TIG堆焊Inconel625的组织及性能[J].中国表面工程,2016,29(2):77-84. GUO L L,ZHENG H L,LI Y Q,et al.Microstructure and performance of Inconel625 cladding deposited by hot wire pulsed TIG[J].China Surface Engineering,2016,29(2):77-84.
[15] 邓守军,孙乐民,张永振.磨损机理的变迁与现状[J].机械研究与应用,2004,17(6):10-11. DENG S J,SUN Y M,ZHANG Y Z.The changes and present status of wear mechanism[J].Mechanical Research and Application, 2004,17(6):10-11.
[16] HUANG S W,SAMANDI M,BRANDT M.Abrasive wear performance and microstructure of laser clad WC/Ni layers[J].Wear,2004,256(11/12):1095-1105.
[1] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[2] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[3] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[4] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[5] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[6] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[7] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[8] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[9] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[10] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[11] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[12] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[13] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[14] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[15] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn