Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 127-134    DOI: 10.11868/j.issn.1001-4381.2018.000496
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能
张航1, 路媛媛2, 王涛1, 鲁亚冉1, 刘德健1
1. 华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074;
2. 湖北工业大学 工程技术学院, 武汉 430068
Impact toughness and wear property of WC/H13-Inconel625 composites by laser cladding
ZHANG Hang1, LU Yuan-yuan2, WANG Tao1, LU Ya-ran1, LIU De-jian1
1. State Key Laboratory of Material Processing and Die Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
2. School of Engineering Technology, Hubei University of Technology, Wuhan 430068, China
全文: PDF(17444 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对传统颗粒增强复合材料韧性较差的问题,以WC/H13为增强区材料,Inconel625为韧化区材料,采用激光熔覆的方法制备空间夹层分布的结构韧化复合材料。借助光学显微镜、超景深三维显微镜、扫描电子显微镜分析复合材料及其冲击断口的微观结构与组织,利用夏比冲击试验机、摩擦磨损试验机研究复合材料的冲击韧性与磨损性能。结果表明:增强区为20%(体积分数,下同)WC/H13复合材料,以WC颗粒和反应生成的碳化物M6C为主要增强相;韧化区为Inconel625合金,主要组织为柱状晶、树枝晶和沉淀相。Inconel625平均硬度为230.5HV,WC/H13硬度由强韧界面向中心区域逐渐升高到402HV。结构韧化复合材料的平均冲击功为13.8J/cm2,是传统10% WC/H13复合材料的5.5倍。在室温干滑动磨损条件下,结构韧化复合材料的耐磨性达到传统10% WC/H13复合材料相同水平,是淬火态H13钢的5倍,结构韧化复合材料的平均摩擦因数为传统10% WC/H13复合材料的81%,淬火态H13钢的80%,具有良好的减摩效果与耐磨性。结构韧化可以在保证优异耐磨性的同时,大幅度提高颗粒增强复合材料的冲击韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张航
路媛媛
王涛
鲁亚冉
刘德健
关键词 激光熔覆复合材料结构韧化冲击韧性耐磨性    
Abstract:To improve the poor toughness of traditional particulate reinforced composites, microstructurally toughened composites with WC/H13 as reinforced region and Inconel625 as toughened region were prepared by laser cladding. The microstructure of composites and impact fracture were analysed by optical microscopy, ultra-depth 3D microscope and scanning electron microscopy. The impact toughness and wear property of composites were investigated by Charpy impact testing machine and friction-abrasion testing machine. The results show that the reinforced region of 20% (volume fraction,the same below)WC/H13 is reinforced by WC particles and M6C carbides while the toughened region of Inconel625 alloy is mainly composed of columnar dendrite crystals and precipitated phases. The average hardness of Inconel625 is 230.5HV, while the hardness of WC/H13 is gradually increased to 402HV from the interface to the center area. The average impact energy of microstructurally toughened composites is 13.8J/cm2, which is 5.5 times of traditional 10% WC/H13. In the condition of dry sliding wear at room temperature, the wear resistance of microstructurally toughened composites is comparable to traditional 10% WC/H13 and 5 times of quenched H13 steel. The average friction coefficient of microstructurally toughened composites is 81% of traditional 10% WC/H13 and 80% of quenched H13 steel, which indicates excellent anti-wear and wear resistant property. By microstructurally toughening, the impact toughness of particulate reinforced composites can be substantially improved with excellent wear resistant property ensured.
Key wordslaser cladding    composite material    microstructurally toughened    impact toughness    wear resistance
收稿日期: 2018-05-03      出版日期: 2019-04-19
中图分类号:  TN249  
通讯作者: 刘德健(1978-),男,副教授,博士,主要从事激光焊接与激光表面改性方面的研究,联系地址:湖北省武汉市洪山区华中科技大学东三楼206(430074),E-mail:djliu@hust.edu.cn     E-mail: djliu@hust.edu.cn
引用本文:   
张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
ZHANG Hang, LU Yuan-yuan, WANG Tao, LU Ya-ran, LIU De-jian. Impact toughness and wear property of WC/H13-Inconel625 composites by laser cladding. Journal of Materials Engineering, 2019, 47(4): 127-134.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000496      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/127
[1] 王成彪.摩擦学材料及表面工程[M].北京:国防工业出版社,2012:156-157. WANG C B.Tribological materials and surface engineering[M].Beijing:National Defense Industry Press,2012:156-157.
[2] 杨胶溪,张健全,常万庆,等.激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J].材料工程,2016,44(6):110-116. YANG J X,ZHANG J Q,CHANG W Q,et al.High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J].Journal of Materials Engineering,2016,44(6):110-116.
[3] LEE Y T R,ASHRAFIZADE H,FISHER G,et al.Effect of type of reinforcing particles on the deposition efficiency and wear resistance of low-pressure cold-sprayed metal matrix composite coatings[J].Surface & Coatings Technology,2017,324:190-200.
[4] MIRACLE D B.Metal matrix composites-from science to techn-ological significance[J].Composites Science & Technology,2005,65(15/16):2526-2540.
[5] 张玉波,郭荣鑫,夏海廷,等.WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J].材料工程,2017,45(1):85-92. ZHANG Y B,GUO R X,XIA H T,et al.Effect of WCp content on fatigue crack growth behavior of powder metallurgy Cu/WCp composites[J].Journal of Materials Engineering,2017,45(1):85-92.
[6] YE F X,HOJAMBERDIEY M,XU Y H,et al.Volume fraction effect of V8C7 particulates on impact toughness and wear performance of V8C7/Fe monolithic composites[J].Journal of Materials Engineering & Performance,2014,23(4):1402-1407.
[7] 张宁.WC颗粒增强钢基复合材料的组织及性能研究[D].徐州:中国矿业大学,2015. ZHANG N.Study on the microstructure and property of WC particulates reinforced steel matrix composites[D].Xuzhou:China University of Mining and Technology,2015.
[8] NARDONE V C,STRIFE J R,PREWO K M.Microstructurally toughened particulate-reinforced aluminum matrix composites[J].Metallurgical Transactions A,1991,22(1):171-182.
[9] 杨少锋,张炎,蔡云杰,等.三维网络结构Al2O3陶瓷/高铬铸铁复合材料干摩擦磨损性能[J].复合材料学报,2014,31(3):683-691. YANG S F, ZHANG Y,CAI Y J,et al.Dry friction and wear properties of 3D-meshy Al2O3 ceramic reinforced high chromium iron composites[J].Acta Materiae Compositae Sinica,2014,31(3):683-691.
[10] QING S Y,ZHANG G D.Preparation of high fracture perfo-rmance SiCp-6061A1/6061A1 composite[J].Materials Science & Engineering:A,2000,279(1/2):231-236.
[11] 赵馨月.陶瓷颗粒增强钢基复合材料/钢三维互穿网络结构材料的制备及性能初探[D].昆明:昆明理工大学,2016. ZHAO X Y.Preparation and investigation of 3D-MMCs/steel composites with interpenetrating Bi-continuous structure[D].Kunming:Kunming University of Science and Technology,2016.
[12] CURREY J D,KOHN A J.Fracture in the crossed-lamellar structure of conus shells[J].Journal of Material Science,1976,11(9):1615-1623.
[13] 刘德建,陈彦宾,李福泉,等.激光熔注法制备WC颗粒增强金属基复合材料层[J].中国激光,2008,35(7):1083-1086. LIU D J,CHEN Y B,LI F Q,et al.WC particulate reinforced metal matrix composites layers produced by laser melt injection[J].Chinese Journal of Lasers,2008,35(7):1083-1086.
[14] 郭龙龙,郑华林,李悦钦,等.热丝脉冲TIG堆焊Inconel625的组织及性能[J].中国表面工程,2016,29(2):77-84. GUO L L,ZHENG H L,LI Y Q,et al.Microstructure and performance of Inconel625 cladding deposited by hot wire pulsed TIG[J].China Surface Engineering,2016,29(2):77-84.
[15] 邓守军,孙乐民,张永振.磨损机理的变迁与现状[J].机械研究与应用,2004,17(6):10-11. DENG S J,SUN Y M,ZHANG Y Z.The changes and present status of wear mechanism[J].Mechanical Research and Application, 2004,17(6):10-11.
[16] HUANG S W,SAMANDI M,BRANDT M.Abrasive wear performance and microstructure of laser clad WC/Ni layers[J].Wear,2004,256(11/12):1095-1105.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn