Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 110-117    DOI: 10.11868/j.issn.1001-4381.2018.000501
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纤维/环氧树脂复合材料高速冲击性能
顾善群1,2, 刘燕峰1,2, 李军1,2, 陈祥宝1,2, 张代军1,2, 邹齐1,2, 肖锋1,2
1. 中国航发北京航空材料研究院 软材料技术研究中心, 北京 100095;
2. 中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095
High speed impact properties of carbon fiber/epoxy resin composites
GU Shan-qun1,2, LIU Yan-feng1,2, LI Jun1,2, CHEN Xiang-bao1,2, ZHANG Dai-jun1,2, ZOU Qi1,2, XIAO Feng1,2
1. Soft Materials Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(7774 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用树脂传递模塑(RTM)工艺制备碳纤维/环氧树脂复合材料,通过空气炮冲击实验研究树脂韧性和碳纤维类型对复合材料抗高速冲击性能的影响,并对高速冲击后的试样进行压缩性能测试,研究高速冲击损伤对复合材料剩余压缩性能的影响。结果表明:树脂的韧性可以降低复合材料遭受高速冲击时的内部损伤程度,大幅提高复合材料的抗高速冲击性能和冲击后剩余压缩性能;T700S碳纤维增强复合材料抗高速冲击性能优于T800H碳纤维增强复合材料;复合材料的破坏模式与冲击速率有关,冲击速率较低时,复合材料弹击面出现圆形凹坑,背弹面出现鼓包;冲击速率较高时,复合材料弹击面出现圆形通孔,背弹面出现沿纤维方向撕裂断口。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾善群
刘燕峰
李军
陈祥宝
张代军
邹齐
肖锋
关键词 树脂传递模塑碳纤维/环氧树脂复合材料空气炮冲击实验抗高速冲击性能剩余压缩性能    
Abstract:The carbon fiber/epoxy resin composites were prepared by the resin transfer molding (RTM) process. Effect of resin toughness and carbon fiber type on the high speed impact properties was investigated using the air cannon impact test. The effect of high speed impact damage on the residual compressive property of the composites was studied by the compression performance test of the samples which were impacted at high speed. The results demonstrate that the resin toughness can greatly reduce the internal damage degree of composite materials subjected to high speed impact, and can improve the anti-high speed impact property and residual compressive property of the composites. Also, the anti-high speed impact property of T700S carbon fiber reinforced composites is superior to that of the T800H carbon fiber reinforced composites. The results also indicate that failure modes are highly dependent on the impact velocity. Specifically, when the impact velocity is low, the composites appear a circular pit on the impact surface while the back surface appears a convex protrusion. Also, when the impact velocity is high, a circular hole is formed on the impact surface of composites, and the tearing fracture along the fiber direction is observed on the back surface.
Key wordsresin transfer molding(RTM)    carbon fiber/epoxy resin composites    air cannon impact test    anti-high speed impact property    residual compressive property
收稿日期: 2018-05-03      出版日期: 2019-08-22
中图分类号:  TB332  
通讯作者: 陈祥宝(1956-),男,研究员,博士,主要从事复合材料树脂基体、成型工艺和低成本技术的研究,联系地址:北京市81信箱3分箱(100095),E-mail:xiangbao.chen@biam.ac.cn     E-mail: xiangbao.chen@biam.ac.cn
引用本文:   
顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
GU Shan-qun, LIU Yan-feng, LI Jun, CHEN Xiang-bao, ZHANG Dai-jun, ZOU Qi, XIAO Feng. High speed impact properties of carbon fiber/epoxy resin composites. Journal of Materials Engineering, 2019, 47(8): 110-117.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000501      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/110
[1] SARKAR S, ATLURI S N. Effects of multiple blade interaction on the containment of blade fragments during a rotor failure[J]. Finite Elements in Analysis and Design, 1996, 23(2/4):211-223.
[2] WANG F, SUN Y, ZENG H. Study of uncontained turbine engine rotor failure airworthiness compliance verification method[J]. Procedia Engineering, 2011, 17(1/4):531-541.
[3] YANG B. Blade containment evaluation of civil aircraft engines[J]. Chinese Journal of Aeronautics, 2013, 26(1):9-16.
[4] LIU L, ZHAO Z, CHEN W, et al. Ballistic impact behaviour of stiffened aluminium plates for gas turbine engine containment system[J]. International Journal of Crashworthiness, 2017, 22(5):1-12.
[5] XUAN H J, LIU L L, FENG Y M, et al. Containment of high-speed rotating disk fragments[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering),2012,13(9):665-673.
[6] 沈尔明,王志宏,赵凤飞,等. 风扇机匣材料应用现状与发展[J]. 航空制造技术, 2013(13):92-95. SHEN E M, WANG Z H, ZHAO F F, et al. Application and development of material for aeroengine fan case[J]. Aeronautical Manufacturing Technology, 2013(13):92-95.
[7] KATSICHA C, BADISCHA E, MANISH R, et al. Erosive wear of hardfaced Fe-Cr-C alloys at elevated temperature[J]. Wear, 2009, 267(6):1856-1864.
[8] HOLLAWAY L C. The evolution of and the way forward for advanced polymer composites in the civil infrastructure[J]. Construction and Building Materials, 2003, 17(6):365-378.
[9] CHEUNG K C, GERSHENFELD N. Reversibly assembled cellular composite materials[J]. Science, 2013, 341(6151):1219-1221.
[10] LIN S P, HAN J L, YEH J T, et al. Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer net-works[J]. European Polymer Journal, 2007, 43(3):996-1008.
[11] TARIM N, FINDIK F, UZUN H. Ballistic impact performance of composite structures[J]. Composite Structures, 2002, 56(1):13-20.
[12] TALIB A R A, ABBUD L H, ALI A, et al. Ballistic impact performance of Kevlar-29 and Al2O3 powder/epoxy targets under high velocity impact[J]. Materials & Design, 2012, 35:12-19.
[13] ZOHDI T I, POWELL D. Multiscale construction and large-scale simulation of structural fabric undergoing ballistic impact[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(1/3):94-109.
[14] CHU T L, CUONG H M, IMAD A. Analysis of local and global localizations on the failure phenomenon of 3D interlock woven fabrics under ballistic impact[J]. Composite Structures, 2017, 159:267-277.
[15] PAN B, YU L, YANG Y, et al. Full-field transient 3D deform-ation measurement of 3D braided composite panels during ballistic impact using single-camera high-speed stereo-digital image correlation[J]. Composite Structures, 2016, 157:25-32.
[16] LONG D. Simulation of ballistic impact on polymer matrix composite panels[J]. Journal of Theoretical and Applied Mechanics, 2015, 53(2):263-272.
[17] 邓华,高军鹏,包建文. 取向非连续碳纤维复合材料制备与性能[J]. 航空材料学报, 2018, 38(1):69-74. DENG H, GAO J P, BAO J W. Preparation and mechanical properties of aligned discontinuous carbon fiber composites[J]. Journal of Aeronautical Material, 2018, 38(1):69-74.
[1] 栗晓飞, 张琦, 项民. 浸泡腐蚀对复合材料导电性能和力学性能的影响[J]. 材料工程, 2009, 0(2): 1-5.
[2] 尹昌平, 肖加余, 曾竟成, 刘钧, 代晓青. 苯并噁嗪树脂流变特性及工艺窗口预报研究[J]. 材料工程, 2008, 0(6): 5-8,12.
[3] 吴晓青, 李嘉禄, 陈祖胖. 有限元网格对RTM充模模拟的影响[J]. 材料工程, 2007, 0(5): 11-14,18.
[4] 李小刚, 李宏运, 胡宏军, 益小苏. BMI树脂RTM成型工艺性及其编织复合材料性能研究[J]. 材料工程, 2004, 0(9): 52-56.
[5] 李小刚, 李宏运, 胡宏军, 益小苏. RTM用双马来酰亚胺树脂流变特性研究[J]. 材料工程, 2003, 0(6): 11-14.
[6] 马青松, 陈朝辉, 郑文伟, 胡海峰. Cf/Si-O-C复杂形状应用构件的制备[J]. 材料工程, 2001, 0(12): 43-45.
[7] 李萍, 陈祥宝. RTM技术的发展及在航空工业的应用[J]. 材料工程, 1998, 0(1): 46-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn