Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 147-153    DOI: 10.11868/j.issn.1001-4381.2018.000541
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
无取向硅钢形变储能取向依赖性及其对再结晶织构的影响
储双杰1, 沈侃毅1, 沙玉辉2, 陈曦2
1. 宝山钢铁股份有限公司, 上海 201900;
2. 东北大学 材料各向异性与织构教育部重点实验室, 沈阳 110819
Orientation dependence of strain stored energy and its effect on recrystallization texture in non-oriented silicon steel
CHU Shuang-jie1, SHEN Kan-yi1, SHA Yu-hui2, CHEN Xi2
1. Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China;
2. Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China
全文: PDF(4359 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用晶体塑性有限元模拟与实验相结合的方式,研究无取向硅钢冷轧过程中不同初始织构组分的取向流动与形变储能累积。结果表明:冷轧后形成了较强的α,γ形变织构和较弱的λ形变织构。再结晶织构由γ,α,η和λ织构组成,其取向密度依赖于冷轧压下率。随冷轧压下率增大,λ再结晶织构逐渐增强,η织构先增强后减弱,γ织构先减弱后增强,α织构稍有弱化。冷轧过程中形变储能累积具有明显的初始取向依赖性,初始γ取向储能累积速率在低于50%压下率时与初始α取向接近,高于50%压下率时则明显大于后者,初始λ取向储能累积速率始终显著低于γ和α取向,转至同一形变取向的不同初始取向间的储能累积也会产生差异。冷轧过程中不同初始织构组分的取向流动与形变储能累积规律,决定了无取向硅钢再结晶织构组分的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
储双杰
沈侃毅
沙玉辉
陈曦
关键词 无取向硅钢再结晶织构形变储能取向流动    
Abstract:The crystal plasticity finite element simulation and experiment were used to study the orientation flow and strain stored energy accumulation of different initial texture components during cold rolling in non-oriented silicon steel. The results show that strong α and γ as well as weak λ deformation textures are formed after cold rolling. The recrystallization texture consists of γ, α, η and λ components, whose orientation densities are dependent on cold rolling reduction. With the increase of cold rolling reduction, λ recrystallization texture increases gradually, η recrystallization texture increases first and then decreases, γ recrystallization texture decreases first and then increases, while α recrystallization texture is weakened slightly. The strain stored energy during cold rolling has a significant dependence on initial grain orientation that the initial γ orientation has a similar or evidently higher strain stored energy accumulation rate below or above 50% reduction compared with initial α orientation, while λ keeps the lowest strain stored energy accumulation rate during cold rolling. Particularly, the different initial orientations rotating to an identical deformed orientation may cause an obvious difference in strain stored energy accumulation rate. The development of recrystallization texture in non-oriented silicon steel is determined by orientation flow and strain stored energy accumulation in various texture components during cold rolling.
Key wordsnon-oriented silicon steel    recrystallization texture    strain stored energy    orientation flow
收稿日期: 2018-05-14      出版日期: 2019-08-22
中图分类号:  TG142  
通讯作者: 储双杰(1964-),男,教授级高级工程师,博士,主要从事先进金属材料制造理论与技术研究,E-mail:sjchu@baosteel.com;沙玉辉(1969-),男,教授,博士,主要从事金属材料织构控制理论与技术研究,E-mail:yhsha@mail.neu.edu.cn     E-mail: sjchu@baosteel.com;yhsha@mail.neu.edu.cn
引用本文:   
储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
CHU Shuang-jie, SHEN Kan-yi, SHA Yu-hui, CHEN Xi. Orientation dependence of strain stored energy and its effect on recrystallization texture in non-oriented silicon steel. Journal of Materials Engineering, 2019, 47(8): 147-153.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000541      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/147
[1] HUMPHREYS F J,HATHERLY M.Recrystallization and related annealing phenomena[M].2nd ed.Oxford,UK:Elsevier,2004:22-23.
[2] EVERY R L,HATHERLY M.Oriented nucleation in low-carbon steels[J].Texture,Stress,and Microstructure,1974,1(3):183-194.
[3] 裴伟,沙玉辉,赵瑞清,等.异步轧制无取向硅钢的再结晶织构演变[J].东北大学学报(自然科学版),2012,33(9):1261-1265. PEI W,SHA Y H,ZHAO R Q,et al.Recrystallization texture development in asymmetrically rolled non-oriented silicon steel[J].Journal of Northeastern University (Natural Science),2012,33(9):1261-1265.
[4] PARK J T,SZPUNAR J A.Evolution of recrystallization texture in nonoriented electrical steels[J].Acta Materialia,2003,51(11):3037-3051.
[5] ABE M,KOKABU Y,HAYASHI Y,et al.Effect of grain boun-daries on the cold rolling and annealing textures of pure iron[J].Transactions of the Japan Institute of Metals,1982,23(11):718-725.
[6] SHA Y H,SUN C,ZHANG F,et al.Strong cube recrystallization texture in silicon steel by twin-roll casting process[J].Acta Materialia,2014,76:106-117.
[7] QUADIR M Z,DUGGAN B J.Deformation banding and recryst-allization of α fiber components in heavily rolled IF steel[J].Acta Materialia,2004,52(13):4011-4021.
[8] STOJAKOVIC D,DOHERTY R D,KALIDINDI S R,et al.Ther-momechanical processing for recovery of desired 〈001〉 fiber texture in electric motor steels[J].Metallurgical and Materials Transactions A,2008,39(7):1738-1746.
[9] HUTCHINSON W B.Development and control of annealing text-ures in low-carbon steels[J].Metallurgical Reviews,1984,29(1):25-42.
[10] CHENG J,SHEN J,MISHRA R K,et al.Discrete twin evolution in Mg alloys using a novel crystal plasticity finite element model[J].Acta Materialia,2018,149:142-153.
[11] 赵文娟,张露,李晓滨,等.γ-TiAl单晶塑性变形中晶粒转动的CPFEM模拟[J].中国有色金属学报,2018,28(3):465-473. ZHAO W J,ZHANG L,LI X B,et al.CPFEM simulations on grain rotation of γ-TiAl single crystal during plastic deformation[J].The Chinese Journal of Nonferrous Metals,2018,28(3):465-473.
[12] HAMA T,KOBUKI A,TAKUDA H.Crystal-plasticity finite-element analysis of anisotropic deformation behavior in a comm-ercially pure titanium grade 1 sheet[J].International Journal of Plasticity,2017,91:77-108.
[13] WEI X,HOJDA S,DIERDORF J,et al.Model for texture evol-ution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel[C]//20th International ESAFORM Conference on Material Forming.Dublin, Ireland:American Institute of Physics,2017:170005.
[14] 申孝民,关小军,张继祥,等.有限元与Monte Carlo方法耦合的冷轧纯铝板再结晶模拟[J].中国有色金属学报,2007,17(1):124-130. SHEN X M,GUAN X J,ZHANG J X,et al.Coupling of FEM with Monte Carlo for simulating recrystallization in cold rolling pure aluminum sheet[J].The Chinese Journal of Nonferrous Metals,2007,17(1):124-130.
[15] HUANG Y.A user-material subroutine incorporating single cry-stal plasticity in the ABAQUS finite element program[D].Cambridge,US:Harvard University,1991.
[16] HUTCHINSON J W.Bounds and self-consistent estimates for creep of polycrystalline materials[J].Proceedings of the Royal Society A,1976,348(1652):101-127.
[17] KLUSEMANN B,SVENDSEN B,VEHOFF H.Investigation of the deformation behavior of Fe-3%Si sheet metal with large grains via crystal plasticity and finite-element modeling[J].Computational Materials Science,2012,52(1):25-32.
[18] MOHAMED G,BACROIX B.Role of stored energy in static rec-rystallization of cold rolled copper single and multicrystals[J].Acta Materialia,2000,48(13):3295-3302.
[19] HULL D.Orientation and temperature dependence of plastic def-ormation processes in 3.25% silicon iron[J].Proceedings of the Royal Society A,1963,274(1356):5-20.
[20] INAGAKI H.Fundamental aspect of texture formation in low carbon steel[J].ISIJ International,1994,34(4):313-321.
[21] 何忠治,赵宇,罗海文.电工钢[M].北京:冶金工业出版社,2012:83-85. HE Z Z,ZHAO Y,LUO H W.Electrical steels[M].Beijing:Metallurgical Industry Press,2012:83-85.
[22] USHIODA K,NAKANISHI S,MORIKAWA T,et al.Evolution of heterogeneous deformation structure and recrystallization texture of steel[J].Materials Science Forum,2013,753:58-65.
[23] DENIS N M,ROBERT B M,BELADI H.The influence of solute carbon in cold-rolled steels on shear band formation and recrystallization texture[J].ISIJ International,2004,44(6):1072-1078.
[1] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[2] 龚坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展[J]. 材料工程, 2015, 43(6): 102-112.
[3] 周顺兵, 冯大军. 无取向硅钢晶粒长大过程中应力对织构和晶界变化的影响[J]. 材料工程, 2012, 0(9): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn