1 School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China 2 School of Environmental & Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
Supercapacitors are a new type of energy storage element that has been rapidly developed in recent years. The most important factor that determines the performance of supercapacitors is electrode materials. The development of low-cost, high-performance electrode materials is an important research direction for current supercapacitors. Metal-organic frameworks (MOFs) are a class of porous materials. The applications of MOFs in the supercapacitor have attracted more and more researchers due to their diverse composition and structure, large specific surface area, controllable structure and adjustable pore size. Recent researching application progress of pristine MOFs, MOFs-derived(porous carbon, metal oxides, porous carbon/metal oxides) and MOFs-composite materials for supercapacitors was summarized in this paper. The MOFs with different structural characteristics and their specific performance in the field of electrochemical energy storage were discussed. MOFs based supercapacitors are demonstrated to play an important role in the field of new energy storage and conversion. Finally, the current challenges, future trends and prospects of MOFs in the field of ultracapacitors were pointed out.
LI S L , XU Q . Metal-organic frameworks as platforms for clean energy[J]. Energy & Environmental Science, 2013, 6 (6): 1656- 1683.
2
QI F , XIA Z , WEI W , et al. Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors[J]. Electr-ochimica Acta, 2017, 246, 59- 67.
doi: 10.1016/j.electacta.2017.05.192
3
HUANG Y , ZENG Y , YU M , et al. Recent smart methods for achieving high-energy asymmetric supercapacitors[J]. Small Methods, 2018, 2 (2): 1700230.
doi: 10.1002/smtd.201700230
4
LIU C , YU Z , NEFF D , et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2014, 10 (12): 4863- 4868.
LEI W , ZHAO X M , HE P , et al. Research progress of carbon-based electrode materials of supercapacitors[J]. Chemistry Bulletin Chem Bull, 2013, 76 (11): 981- 987.
6
WU X , HAN Z , ZHENG X , et al. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties[J]. Nano Energy, 2017, 31, 410- 417.
doi: 10.1016/j.nanoen.2016.11.035
7
FENG D Y , SONG Y , HUANG Z H , et al. Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor[J]. Journal of Power Sources, 2016, 324, 788- 797.
doi: 10.1016/j.jpowsour.2016.05.112
ZHOU J , XIE L H , DOU Y B , et al. MOFs-based materials for supercapacitor[J]. Chemical Industry and Engineering Progress, 2016, 35 (9): 2830- 2838.
9
O'KEEFFE M , YAGHI O M . Deconstructing the crystal struct-ures of metal-organic frameworks and related materials into their underlying nets[J]. Chemical Reviews, 2012, 112 (2): 675- 702.
doi: 10.1021/cr200205j
10
JIAO Y , PEI J , YAN C , et al. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid deceives[J]. Journal of Materials Chemistry A, 2016, 4 (34): 13344- 13351.
doi: 10.1039/C6TA05384J
11
SALUNKHE R R , KANETI Y V , YAMAUCHI Y . Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications:progress and prospects[J]. ACS Nano, 2017, 11 (6): 5293- 5308.
doi: 10.1021/acsnano.7b02796
12
PAZ F A , KLINOWSKI J , VILELA S M , et al. Ligand design for functional metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41 (3): 1088- 1110.
doi: 10.1039/C1CS15055C
13
ZOU G , HOU H , GE P , et al. Metal-organic framework-derived materials for sodium energy storage[J]. Small, 2018, 14 (3): 1702648.
doi: 10.1002/smll.201702648
14
HE Y , ZHOU W , QIAN G , et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43 (16): 5657- 5678.
doi: 10.1039/C4CS00032C
LI L B , WANG Y , WANG X Q , et al. Selective gas adsorption and separation in flexible metal-organic frameworks[J]. Chem Ind Eng Prog, 2016, 35 (6): 1794- 1803.
16
RAJAK R , SARAF M , MOHAMMAD A , et al. Design and construction of ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications[J]. Journal of Materials Chemistry A, 2017, 5 (34): 17998- 18011.
doi: 10.1039/C7TA03773B
CHEN Z J , CHE J Y , LI Y W . Metal-organic-framework-based catalysts for hydrogenation reactions[J]. Chinese Journal of Catalysis, 2017, 38 (7): 1108- 1126.
18
CHEN W H , VAZQUEZ-GONZALEZ M , KOZELL A , et al. Cu2+-modified metal-organic framework nanoparticles:a peroxidase-mimicking nanoenzyme[J]. Small, 2017, 14 (5): 1703149.
19
FURUKAWA H , CORDOVA K E , O'KEEFFE M , et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341 (6149): 1230444.
doi: 10.1126/science.1230444
20
HORCAJADA P , CHALATI T , SERRE C , et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9 (2): 172- 178.
21
KE F S , WU Y S , DENG H . Metal-organic frameworks for lithium ion batteries and supercapacitors[J]. Journal of Solid State Chemistry, 2015, 223, 109- 121.
doi: 10.1016/j.jssc.2014.07.008
22
XIA W , QU C , LIANG Z , et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite[J]. Nano Letters, 2017, 17 (5): 2788- 2795.
doi: 10.1021/acs.nanolett.6b05004
23
CHEN T , PENG H , DURSTOCK M , et al. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets[J]. Scientific Reports, 2014, 4, 3612.
24
XU C , XU B , GU Y , et al. Graphene-based electrodes for elect-rochemical energy storage[J]. Energy & Environmental Science, 2013, 6 (5): 1388- 1414.
25
FAN W , XIA Y Y , TJIU W W , et al. Nitrogen-doped grap-hene hollow nanospheres as novel electrode materials for supercapacitor applications[J]. Journal of Power Sources, 2013, 243, 973- 981.
doi: 10.1016/j.jpowsour.2013.05.184
26
WANG J G , YANG Y , HUANG Z H , et al. A high-perfor-mance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes[J]. Carbon, 2013, 61, 190- 199.
doi: 10.1016/j.carbon.2013.04.084
27
HUANG J , XU P , CAO D , et al. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density[J]. Journal of Power Sources, 2014, 246, 371- 376.
doi: 10.1016/j.jpowsour.2013.07.105
28
XUE T , LEE J M . Capacitive behavior of mesoporous Co(OH)2 nanowires[J]. Journal of Power Sources, 2014, 245, 194- 202.
doi: 10.1016/j.jpowsour.2013.06.135
29
HAO C , WEN F , XIANG J , et al. Controlled incorporation of Ni(OH)2 nanoplates into flowerlike MoS2 nanosheets for flexible all-solid-state supercapacitors[J]. Advanced Functional Mate-rials, 2014, 24 (42): 6700- 6707.
doi: 10.1002/adfm.201401268
30
ZHANG F , XIAO F , DONG Z H , et al. Synthesis of polypy-rrole wrapped graphene hydrogels composites as supercapacitor electrodes[J]. Electrochimica Acta, 2013, 114, 125- 132.
doi: 10.1016/j.electacta.2013.09.153
31
CAO H , ZHOU X , ZHANG Y , et al. Microspherical polyani-line/graphene nanocomposites for high performance superca-pacitors[J]. Journal of Power Sources, 2013, 243, 715- 720.
doi: 10.1016/j.jpowsour.2013.06.032
32
DIAZ R , ORCAJO M G , BOTAS J A , et al. Co8-MOF-5 as electrode for supercapacitors[J]. Materials Letters, 2012, 68, 126- 128.
doi: 10.1016/j.matlet.2011.10.046
33
LEE D Y , YOON S J , SHRESTHA N K , et al. Unusual energy storage and charge retention in Co-based metal-organic-frameworks[J]. Microporous & Mesoporous Materials, 2012, 153 (3): 163- 165.
34
LEE D Y , SHINDE D V , KIM E K , et al. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology[J]. Microporous & Mesoporous Materials, 2013, 171 (10): 53- 57.
35
YANG J , ZHENG C , XIONG P , et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. Journal of Materials Chemistry A, 2014, 2 (44): 19005- 19010.
doi: 10.1039/C4TA04346D
36
QU C , JIAO Y , ZHAO B , et al. Nickel-based pillared MOFs for high-performance supercapacitors:design, synthesis and stability study[J]. Nano Energy, 2016, 26, 66- 73.
doi: 10.1016/j.nanoen.2016.04.003
37
CHOI K M , JEONG H M , PARK J H , et al. Supercapacitors of nanocrystalline metal-organic frameworks[J]. ACS Nano, 2014, 8 (7): 7451- 7457.
doi: 10.1021/nn5027092
38
ZHANG D , SHI H , ZHANG R , et al. Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances[J]. Rsc Adv-ances, 2015, 5 (72): 58772- 58776.
doi: 10.1039/C5RA08226A
39
SHEBERLA D , BACHMAN J C , ELIAS J S , et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials, 2017, 16 (2): 220- 224.
doi: 10.1038/nmat4766
40
LIU C , YU Z , NEFF D , et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2014, 10 (12): 4863- 4868.
41
LIU B , SHIOYAMA H , AKITA T , et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society, 2008, 130 (16): 5390- 5391.
doi: 10.1021/ja7106146
42
SALUNKHE R , KAMACHI Y , TORAD N , et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons[J]. Journal of Materials Chemistry A, 2014, 2 (46): 19848- 19854.
doi: 10.1039/C4TA04277H
43
TORAD N L , SALUNKHE R R , LI Y , et al. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67[J]. Chemistry, 2014, 20 (26): 7895- 7900.
doi: 10.1002/chem.201400089
44
AMALI A J , SUN J K , XU Q . From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chemical Communications, 2014, 50 (13): 1519- 1522.
doi: 10.1039/C3CC48112C
45
BAO W , MONDAL A K , XU J , et al. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors[J]. Journal of Power Sources, 2016, 325, 286- 291.
doi: 10.1016/j.jpowsour.2016.06.037
46
YU F , WANG T , WEN Z , et al. High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound[J]. Journal of Power Sources, 2017, 364, 9- 15.
doi: 10.1016/j.jpowsour.2017.08.013
47
LIU B , SHIOYAMA H , JIANG H , et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48 (2): 456- 463.
doi: 10.1016/j.carbon.2009.09.061
48
HU J , WANG H , GAO Q , et al. Porous carbons prepared by using metal-organic framework as the precursor for superca-pacitors[J]. Carbon, 2010, 48 (12): 3599- 3606.
doi: 10.1016/j.carbon.2010.06.008
49
CHANG T H , YOUNG C , LEE M H , et al. Synthesis of MOF-525 derived nanoporous carbons with different particle sizes for supercapacitor application[J]. Chemistry-An Asian Journal, 2017, 12 (21): 2857- 2862.
doi: 10.1002/asia.201701082
50
HAO F , LI L , ZHANG X , et al. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micr-opolyhedra by direct carbonization of zeolitic imidazolate fram-ework-11[J]. Materials Research Bulletin, 2015, 66, 88- 95.
doi: 10.1016/j.materresbull.2015.02.028
51
GUO B , YANG Y , HU Z , et al. Redox-active organic mole-cules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for superca-pacitor[J]. Electrochimica Acta, 2017, 223, 74- 84.
doi: 10.1016/j.electacta.2016.12.012
52
PANG H , GAO F , CHEN Q , et al. Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis[J]. Dalton Trans, 2012, 41 (19): 5862- 5868.
doi: 10.1039/c2dt12494g
53
MENG F , FANG Z , LI Z , et al. Porous Co3O4 materials prep-ared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1 (24): 7235- 7241.
doi: 10.1039/c3ta11054k
54
ZHANG Y Z , WANG Y , XIE Y L , et al. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors[J]. Nanoscale, 2014, 6 (23): 14354- 14359.
doi: 10.1039/C4NR04782F
55
HAN Y , ZHANG S , SHEN N , et al. MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors[J]. Materials Letters, 2016, 188, 1- 4.
56
ZHANG F , BAO Y , MA S , et al. Hierarchical flower-like nickel phenylphosphonate microspheres and their calcined derivatives for supercapacitor electrode[J]. Journal of Materials Chemistry A, 2017, 5 (16): 7474- 7481.
doi: 10.1039/C7TA00775B
57
CHEN S , XUE M , LI Y , et al. Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for superc-apacitors[J]. Inorganic Chemistry Frontiers, 2015, 2 (2): 177- 183.
doi: 10.1039/C4QI00167B
58
DONG Y , WANG Y , XU Y , et al. Facile synthesis of hierar-chical nanocage MnCo2O4, for high performance supercapacitor[J]. Electrochimica Acta, 2017, 225, 39- 46.
doi: 10.1016/j.electacta.2016.12.109
59
GUAN C , LIU X , REN W , et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J]. Advanced Energy Mate-rials, 2017, 7 (8): 1602391.
60
WANG Y C , LI W B , ZHAO L , et al. MOF-derived binary mixed metal/metal oxide@carbon nanoporous materials and their novel supercapacitive performances[J]. Physical Chemistry Chemical Physics, 2016, 18 (27): 17941- 17948.
doi: 10.1039/C6CP02374F
61
RAOOF J B , HOSSEINI S R , OJINI R , et al. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction[J]. Energy, 2015, 90 (4): 1075- 1081.
62
DAI E , XU J , QIU J , et al. Co@carbon and Co3O4@carbon nanocomposites derived from a single MOF for supercapacitors[J]. Sci Rep, 2017, 7 (1): 12588.
doi: 10.1038/s41598-017-12733-5
63
SRIMUK P , LUANWUTHI S , KRITTAYAVATHANANON A , et al. Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper[J]. Electrochimica Acta, 2015, 157, 69- 77.
doi: 10.1016/j.electacta.2015.01.082
64
JAYAKUMAR A , ANTONY R P , WANG R , et al. MOF-derived hollow cage Nix Co3-xO4 and their synergy with graphene for outstanding supercapacitors[J]. Small, 2017, 13 (11): 1603102.
doi: 10.1002/smll.201603102
65
MAHMOOD A , ZOU R , WANG Q , et al. Nanostructured electrode materials derived from metal-organic framework xerogels for high energy density asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2015, 8 (3): 2148- 2157.
66
WANG L , FENG X , REN L , et al. Flexible solid-state superc-apacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society, 2015, 137 (15): 4920- 4923.
doi: 10.1021/jacs.5b01613
67
YIN D , HUANG G , SUN Q , et al. RGO/Co3O4, composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes[J]. Electrochimica Acta, 2016, 215, 410- 419.
doi: 10.1016/j.electacta.2016.08.110
68
YI H , WANG H , JING Y , et al. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life[J]. Journal of Power Sources, 2015, 285, 281- 290.
doi: 10.1016/j.jpowsour.2015.03.106