Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (8): 1-12    DOI: 10.11868/j.issn.1001-4381.2018.000542
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
金属有机骨架在超级电容器方面的研究进展
亢敏霞1, 周帅2, 熊凌亨1, 宁峰1, 王海坤1, 杨统林1, 邱祖民1,*()
1 南昌大学 资源环境与化工学院, 南昌 330031
2 南昌航空大学 环境与化学工程学院, 南昌 330063
Research progress of metal organic framework in supercapacitors
Min-xia KANG1, Shuai ZHOU2, Ling-heng XIONG1, Feng NING1, Hai-kun WANG1, Tong-lin YANG1, Zu-min QIU1,*()
1 School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
2 School of Environmental & Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(3543 KB)   HTML ( 35 )  
输出: BibTeX | EndNote (RIS)      
摘要 

超级电容器是近年迅速发展起来的一种新型储能元件,决定超级电容器性能的最重要因素是电极材料,开发低成本、高性能的电极材料是当前超级电容器的重要研究方向。金属有机骨架(MOFs)是一类多孔材料,由于MOFs材料的组成与结构多样、比表面积大、结构可控和可调的孔径尺寸等优势,使其在超级电容器方面的应用引起了越来越多研究人员的关注。本文综述了原始MOFs、MOFs衍生物(多孔碳、金属氧化物、多孔碳/金属氧化物)及其MOFs复合材料在超级电容器领域的应用进展,讨论了不同结构特征的MOFs及其在电化学储能领域中展现出特殊的性能,指出MOFs构筑的超级电容器在新能源储存与转换领域发挥的重要作用。最后,提出MOFs基材料应用于超级电容器领域面临的挑战和发展前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
亢敏霞
周帅
熊凌亨
宁峰
王海坤
杨统林
邱祖民
关键词 金属有机骨架超级电容器电极材料衍生物复合材料    
Abstract

Supercapacitors are a new type of energy storage element that has been rapidly developed in recent years. The most important factor that determines the performance of supercapacitors is electrode materials. The development of low-cost, high-performance electrode materials is an important research direction for current supercapacitors. Metal-organic frameworks (MOFs) are a class of porous materials. The applications of MOFs in the supercapacitor have attracted more and more researchers due to their diverse composition and structure, large specific surface area, controllable structure and adjustable pore size. Recent researching application progress of pristine MOFs, MOFs-derived(porous carbon, metal oxides, porous carbon/metal oxides) and MOFs-composite materials for supercapacitors was summarized in this paper. The MOFs with different structural characteristics and their specific performance in the field of electrochemical energy storage were discussed. MOFs based supercapacitors are demonstrated to play an important role in the field of new energy storage and conversion. Finally, the current challenges, future trends and prospects of MOFs in the field of ultracapacitors were pointed out.

Key wordsmetal organic framework    supercapacitor    electrode material    derivative    composite
收稿日期: 2018-05-11      出版日期: 2019-08-22
中图分类号:  TQ172.4  
基金资助:国家自然科学基金资助项目(21276121)
通讯作者: 邱祖民     E-mail: mziqiu@ncu.edu.cn
作者简介: 邱祖民(1963-), 男, 博士, 教授, 主要从事功能性材料应用于电化学领域的研究, 联系地址:江西省南昌市红谷滩新区南昌大学前湖校区资源环境与化工学院(330031), E-mail:mziqiu@ncu.edu.cn
引用本文:   
亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
Min-xia KANG, Shuai ZHOU, Ling-heng XIONG, Feng NING, Hai-kun WANG, Tong-lin YANG, Zu-min QIU. Research progress of metal organic framework in supercapacitors. Journal of Materials Engineering, 2019, 47(8): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000542      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/1
Fig.1  Zn掺杂前后Ni-MOF结构变化[35]
Fig.2  Ni3(HITP)2的分子结构(a)和Ni3(HITP)2粉末在三电极电池中的循环伏安曲线(b)[39]
Fig.3  通过MOFs衍生3种多孔材料的示意图
Fig.4  ZIF-67晶体炭化前后的SEM(1)和TEM(2)图像[43]
(a)ZIF-67晶体;(b)酸处理除去Co纳米颗粒之后获得的NPC-800
Fig.5  NPCs的制备及功能化示意图[51]
Fig.6  在Co-MOF晶体中ABTC3-/HABTC2-/H2ABTC-3种可能的配位模式[53]
Fig.7  ASCs的性能图[62]
(a)100mV/s扫描速率下的CV曲线;(b)ASCs(Co@C//Co3O4@C)在10A/g的电流密度下的循环性能
Fig.8  rGO@Co3O4和Co3O4-rGO-Co3O4复合材料合成过程的示意图[67]
1 LI S L , XU Q . Metal-organic frameworks as platforms for clean energy[J]. Energy & Environmental Science, 2013, 6 (6): 1656- 1683.
2 QI F , XIA Z , WEI W , et al. Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors[J]. Electr-ochimica Acta, 2017, 246, 59- 67.
doi: 10.1016/j.electacta.2017.05.192
3 HUANG Y , ZENG Y , YU M , et al. Recent smart methods for achieving high-energy asymmetric supercapacitors[J]. Small Methods, 2018, 2 (2): 1700230.
doi: 10.1002/smtd.201700230
4 LIU C , YU Z , NEFF D , et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2014, 10 (12): 4863- 4868.
5 雷文, 赵晓梅, 何平, 等. 碳基超级电容器电极材料的研究进展[J]. 化学通报, 2013, 76 (11): 981- 987.
5 LEI W , ZHAO X M , HE P , et al. Research progress of carbon-based electrode materials of supercapacitors[J]. Chemistry Bulletin Chem Bull, 2013, 76 (11): 981- 987.
6 WU X , HAN Z , ZHENG X , et al. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties[J]. Nano Energy, 2017, 31, 410- 417.
doi: 10.1016/j.nanoen.2016.11.035
7 FENG D Y , SONG Y , HUANG Z H , et al. Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor[J]. Journal of Power Sources, 2016, 324, 788- 797.
doi: 10.1016/j.jpowsour.2016.05.112
8 周健, 谢林华, 豆义波, 等. MOFs基材料在超级电容器中的应用[J]. 化工进展, 2016, 35 (9): 2830- 2838.
8 ZHOU J , XIE L H , DOU Y B , et al. MOFs-based materials for supercapacitor[J]. Chemical Industry and Engineering Progress, 2016, 35 (9): 2830- 2838.
9 O'KEEFFE M , YAGHI O M . Deconstructing the crystal struct-ures of metal-organic frameworks and related materials into their underlying nets[J]. Chemical Reviews, 2012, 112 (2): 675- 702.
doi: 10.1021/cr200205j
10 JIAO Y , PEI J , YAN C , et al. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid deceives[J]. Journal of Materials Chemistry A, 2016, 4 (34): 13344- 13351.
doi: 10.1039/C6TA05384J
11 SALUNKHE R R , KANETI Y V , YAMAUCHI Y . Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications:progress and prospects[J]. ACS Nano, 2017, 11 (6): 5293- 5308.
doi: 10.1021/acsnano.7b02796
12 PAZ F A , KLINOWSKI J , VILELA S M , et al. Ligand design for functional metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41 (3): 1088- 1110.
doi: 10.1039/C1CS15055C
13 ZOU G , HOU H , GE P , et al. Metal-organic framework-derived materials for sodium energy storage[J]. Small, 2018, 14 (3): 1702648.
doi: 10.1002/smll.201702648
14 HE Y , ZHOU W , QIAN G , et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43 (16): 5657- 5678.
doi: 10.1039/C4CS00032C
15 李立博, 王勇, 王小青, 等. 柔性金属有机骨架材料(MOFs)用于气体吸附分离[J]. 化工进展, 2016, 35 (6): 1794- 1803.
15 LI L B , WANG Y , WANG X Q , et al. Selective gas adsorption and separation in flexible metal-organic frameworks[J]. Chem Ind Eng Prog, 2016, 35 (6): 1794- 1803.
16 RAJAK R , SARAF M , MOHAMMAD A , et al. Design and construction of ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications[J]. Journal of Materials Chemistry A, 2017, 5 (34): 17998- 18011.
doi: 10.1039/C7TA03773B
17 陈芝杰, 陈俊英, 李映伟. 金属有机骨架基催化剂在加氢反应中的应用[J]. 催化学报, 2017, 38 (7): 1108- 1126.
17 CHEN Z J , CHE J Y , LI Y W . Metal-organic-framework-based catalysts for hydrogenation reactions[J]. Chinese Journal of Catalysis, 2017, 38 (7): 1108- 1126.
18 CHEN W H , VAZQUEZ-GONZALEZ M , KOZELL A , et al. Cu2+-modified metal-organic framework nanoparticles:a peroxidase-mimicking nanoenzyme[J]. Small, 2017, 14 (5): 1703149.
19 FURUKAWA H , CORDOVA K E , O'KEEFFE M , et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341 (6149): 1230444.
doi: 10.1126/science.1230444
20 HORCAJADA P , CHALATI T , SERRE C , et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9 (2): 172- 178.
21 KE F S , WU Y S , DENG H . Metal-organic frameworks for lithium ion batteries and supercapacitors[J]. Journal of Solid State Chemistry, 2015, 223, 109- 121.
doi: 10.1016/j.jssc.2014.07.008
22 XIA W , QU C , LIANG Z , et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite[J]. Nano Letters, 2017, 17 (5): 2788- 2795.
doi: 10.1021/acs.nanolett.6b05004
23 CHEN T , PENG H , DURSTOCK M , et al. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets[J]. Scientific Reports, 2014, 4, 3612.
24 XU C , XU B , GU Y , et al. Graphene-based electrodes for elect-rochemical energy storage[J]. Energy & Environmental Science, 2013, 6 (5): 1388- 1414.
25 FAN W , XIA Y Y , TJIU W W , et al. Nitrogen-doped grap-hene hollow nanospheres as novel electrode materials for supercapacitor applications[J]. Journal of Power Sources, 2013, 243, 973- 981.
doi: 10.1016/j.jpowsour.2013.05.184
26 WANG J G , YANG Y , HUANG Z H , et al. A high-perfor-mance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes[J]. Carbon, 2013, 61, 190- 199.
doi: 10.1016/j.carbon.2013.04.084
27 HUANG J , XU P , CAO D , et al. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density[J]. Journal of Power Sources, 2014, 246, 371- 376.
doi: 10.1016/j.jpowsour.2013.07.105
28 XUE T , LEE J M . Capacitive behavior of mesoporous Co(OH)2 nanowires[J]. Journal of Power Sources, 2014, 245, 194- 202.
doi: 10.1016/j.jpowsour.2013.06.135
29 HAO C , WEN F , XIANG J , et al. Controlled incorporation of Ni(OH)2 nanoplates into flowerlike MoS2 nanosheets for flexible all-solid-state supercapacitors[J]. Advanced Functional Mate-rials, 2014, 24 (42): 6700- 6707.
doi: 10.1002/adfm.201401268
30 ZHANG F , XIAO F , DONG Z H , et al. Synthesis of polypy-rrole wrapped graphene hydrogels composites as supercapacitor electrodes[J]. Electrochimica Acta, 2013, 114, 125- 132.
doi: 10.1016/j.electacta.2013.09.153
31 CAO H , ZHOU X , ZHANG Y , et al. Microspherical polyani-line/graphene nanocomposites for high performance superca-pacitors[J]. Journal of Power Sources, 2013, 243, 715- 720.
doi: 10.1016/j.jpowsour.2013.06.032
32 DIAZ R , ORCAJO M G , BOTAS J A , et al. Co8-MOF-5 as electrode for supercapacitors[J]. Materials Letters, 2012, 68, 126- 128.
doi: 10.1016/j.matlet.2011.10.046
33 LEE D Y , YOON S J , SHRESTHA N K , et al. Unusual energy storage and charge retention in Co-based metal-organic-frameworks[J]. Microporous & Mesoporous Materials, 2012, 153 (3): 163- 165.
34 LEE D Y , SHINDE D V , KIM E K , et al. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology[J]. Microporous & Mesoporous Materials, 2013, 171 (10): 53- 57.
35 YANG J , ZHENG C , XIONG P , et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. Journal of Materials Chemistry A, 2014, 2 (44): 19005- 19010.
doi: 10.1039/C4TA04346D
36 QU C , JIAO Y , ZHAO B , et al. Nickel-based pillared MOFs for high-performance supercapacitors:design, synthesis and stability study[J]. Nano Energy, 2016, 26, 66- 73.
doi: 10.1016/j.nanoen.2016.04.003
37 CHOI K M , JEONG H M , PARK J H , et al. Supercapacitors of nanocrystalline metal-organic frameworks[J]. ACS Nano, 2014, 8 (7): 7451- 7457.
doi: 10.1021/nn5027092
38 ZHANG D , SHI H , ZHANG R , et al. Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances[J]. Rsc Adv-ances, 2015, 5 (72): 58772- 58776.
doi: 10.1039/C5RA08226A
39 SHEBERLA D , BACHMAN J C , ELIAS J S , et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials, 2017, 16 (2): 220- 224.
doi: 10.1038/nmat4766
40 LIU C , YU Z , NEFF D , et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2014, 10 (12): 4863- 4868.
41 LIU B , SHIOYAMA H , AKITA T , et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society, 2008, 130 (16): 5390- 5391.
doi: 10.1021/ja7106146
42 SALUNKHE R , KAMACHI Y , TORAD N , et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons[J]. Journal of Materials Chemistry A, 2014, 2 (46): 19848- 19854.
doi: 10.1039/C4TA04277H
43 TORAD N L , SALUNKHE R R , LI Y , et al. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67[J]. Chemistry, 2014, 20 (26): 7895- 7900.
doi: 10.1002/chem.201400089
44 AMALI A J , SUN J K , XU Q . From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chemical Communications, 2014, 50 (13): 1519- 1522.
doi: 10.1039/C3CC48112C
45 BAO W , MONDAL A K , XU J , et al. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors[J]. Journal of Power Sources, 2016, 325, 286- 291.
doi: 10.1016/j.jpowsour.2016.06.037
46 YU F , WANG T , WEN Z , et al. High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound[J]. Journal of Power Sources, 2017, 364, 9- 15.
doi: 10.1016/j.jpowsour.2017.08.013
47 LIU B , SHIOYAMA H , JIANG H , et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48 (2): 456- 463.
doi: 10.1016/j.carbon.2009.09.061
48 HU J , WANG H , GAO Q , et al. Porous carbons prepared by using metal-organic framework as the precursor for superca-pacitors[J]. Carbon, 2010, 48 (12): 3599- 3606.
doi: 10.1016/j.carbon.2010.06.008
49 CHANG T H , YOUNG C , LEE M H , et al. Synthesis of MOF-525 derived nanoporous carbons with different particle sizes for supercapacitor application[J]. Chemistry-An Asian Journal, 2017, 12 (21): 2857- 2862.
doi: 10.1002/asia.201701082
50 HAO F , LI L , ZHANG X , et al. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micr-opolyhedra by direct carbonization of zeolitic imidazolate fram-ework-11[J]. Materials Research Bulletin, 2015, 66, 88- 95.
doi: 10.1016/j.materresbull.2015.02.028
51 GUO B , YANG Y , HU Z , et al. Redox-active organic mole-cules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for superca-pacitor[J]. Electrochimica Acta, 2017, 223, 74- 84.
doi: 10.1016/j.electacta.2016.12.012
52 PANG H , GAO F , CHEN Q , et al. Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis[J]. Dalton Trans, 2012, 41 (19): 5862- 5868.
doi: 10.1039/c2dt12494g
53 MENG F , FANG Z , LI Z , et al. Porous Co3O4 materials prep-ared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1 (24): 7235- 7241.
doi: 10.1039/c3ta11054k
54 ZHANG Y Z , WANG Y , XIE Y L , et al. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors[J]. Nanoscale, 2014, 6 (23): 14354- 14359.
doi: 10.1039/C4NR04782F
55 HAN Y , ZHANG S , SHEN N , et al. MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors[J]. Materials Letters, 2016, 188, 1- 4.
56 ZHANG F , BAO Y , MA S , et al. Hierarchical flower-like nickel phenylphosphonate microspheres and their calcined derivatives for supercapacitor electrode[J]. Journal of Materials Chemistry A, 2017, 5 (16): 7474- 7481.
doi: 10.1039/C7TA00775B
57 CHEN S , XUE M , LI Y , et al. Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for superc-apacitors[J]. Inorganic Chemistry Frontiers, 2015, 2 (2): 177- 183.
doi: 10.1039/C4QI00167B
58 DONG Y , WANG Y , XU Y , et al. Facile synthesis of hierar-chical nanocage MnCo2O4, for high performance supercapacitor[J]. Electrochimica Acta, 2017, 225, 39- 46.
doi: 10.1016/j.electacta.2016.12.109
59 GUAN C , LIU X , REN W , et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J]. Advanced Energy Mate-rials, 2017, 7 (8): 1602391.
60 WANG Y C , LI W B , ZHAO L , et al. MOF-derived binary mixed metal/metal oxide@carbon nanoporous materials and their novel supercapacitive performances[J]. Physical Chemistry Chemical Physics, 2016, 18 (27): 17941- 17948.
doi: 10.1039/C6CP02374F
61 RAOOF J B , HOSSEINI S R , OJINI R , et al. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction[J]. Energy, 2015, 90 (4): 1075- 1081.
62 DAI E , XU J , QIU J , et al. Co@carbon and Co3O4@carbon nanocomposites derived from a single MOF for supercapacitors[J]. Sci Rep, 2017, 7 (1): 12588.
doi: 10.1038/s41598-017-12733-5
63 SRIMUK P , LUANWUTHI S , KRITTAYAVATHANANON A , et al. Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper[J]. Electrochimica Acta, 2015, 157, 69- 77.
doi: 10.1016/j.electacta.2015.01.082
64 JAYAKUMAR A , ANTONY R P , WANG R , et al. MOF-derived hollow cage Nix Co3-xO4 and their synergy with graphene for outstanding supercapacitors[J]. Small, 2017, 13 (11): 1603102.
doi: 10.1002/smll.201603102
65 MAHMOOD A , ZOU R , WANG Q , et al. Nanostructured electrode materials derived from metal-organic framework xerogels for high energy density asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2015, 8 (3): 2148- 2157.
66 WANG L , FENG X , REN L , et al. Flexible solid-state superc-apacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society, 2015, 137 (15): 4920- 4923.
doi: 10.1021/jacs.5b01613
67 YIN D , HUANG G , SUN Q , et al. RGO/Co3O4, composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes[J]. Electrochimica Acta, 2016, 215, 410- 419.
doi: 10.1016/j.electacta.2016.08.110
68 YI H , WANG H , JING Y , et al. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life[J]. Journal of Power Sources, 2015, 285, 281- 290.
doi: 10.1016/j.jpowsour.2015.03.106
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[6] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[7] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[8] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[9] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[10] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[11] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[12] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[15] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn