Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 1-12    DOI: 10.11868/j.issn.1001-4381.2018.000542
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
金属有机骨架在超级电容器方面的研究进展
亢敏霞1, 周帅2, 熊凌亨1, 宁峰1, 王海坤1, 杨统林1, 邱祖民1
1. 南昌大学 资源环境与化工学院, 南昌 330031;
2. 南昌航空大学 环境与化学工程学院, 南昌 330063
Research progress of metal organic framework in supercapacitors
KANG Min-xia1, ZHOU Shuai2, XIONG Ling-heng1, NING Feng1, WANG Hai-kun1, YANG Tong-lin1, QIU Zu-min1
1. School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China;
2. School of Environmental & Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(3543 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 超级电容器是近年迅速发展起来的一种新型储能元件,决定超级电容器性能的最重要因素是电极材料,开发低成本、高性能的电极材料是当前超级电容器的重要研究方向。金属有机骨架(MOFs)是一类多孔材料,由于MOFs材料的组成与结构多样、比表面积大、结构可控和可调的孔径尺寸等优势,使其在超级电容器方面的应用引起了越来越多研究人员的关注。本文综述了原始MOFs、MOFs衍生物(多孔碳、金属氧化物、多孔碳/金属氧化物)及其MOFs复合材料在超级电容器领域的应用进展,讨论了不同结构特征的MOFs及其在电化学储能领域中展现出特殊的性能,指出MOFs构筑的超级电容器在新能源储存与转换领域发挥的重要作用。最后,提出MOFs基材料应用于超级电容器领域面临的挑战和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
亢敏霞
周帅
熊凌亨
宁峰
王海坤
杨统林
邱祖民
关键词 金属有机骨架超级电容器电极材料衍生物复合材料    
Abstract:Supercapacitors are a new type of energy storage element that has been rapidly developed in recent years. The most important factor that determines the performance of supercapacitors is electrode materials. The development of low-cost, high-performance electrode materials is an important research direction for current supercapacitors. Metal-organic frameworks (MOFs) are a class of porous materials. The applications of MOFs in the supercapacitor have attracted more and more researchers due to their diverse composition and structure, large specific surface area, controllable structure and adjustable pore size. Recent researching application progress of pristine MOFs, MOFs-derived(porous carbon, metal oxides, porous carbon/metal oxides) and MOFs-composite materials for supercapacitors was summarized in this paper. The MOFs with different structural characteristics and their specific performance in the field of electrochemical energy storage were discussed. MOFs based supercapacitors are demonstrated to play an important role in the field of new energy storage and conversion. Finally, the current challenges, future trends and prospects of MOFs in the field of ultracapacitors were pointed out.
Key wordsmetal organic framework    supercapacitor    electrode material    derivative    composite
收稿日期: 2018-05-11      出版日期: 2019-08-22
中图分类号:  TQ172.4  
通讯作者: 邱祖民(1963-),男,博士,教授,主要从事功能性材料应用于电化学领域的研究,联系地址:江西省南昌市红谷滩新区南昌大学前湖校区资源环境与化工学院(330031),E-mail:mziqiu@ncu.edu.cn     E-mail: mziqiu@ncu.edu.cn
引用本文:   
亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
KANG Min-xia, ZHOU Shuai, XIONG Ling-heng, NING Feng, WANG Hai-kun, YANG Tong-lin, QIU Zu-min. Research progress of metal organic framework in supercapacitors. Journal of Materials Engineering, 2019, 47(8): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000542      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/1
[1] LI S L, XU Q. Metal-organic frameworks as platforms for clean energy[J]. Energy & Environmental Science, 2013, 6(6):1656-1683.
[2] QI F, XIA Z, WEI W, et al. Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors[J]. Electr-ochimica Acta, 2017, 246:59-67.
[3] HUANG Y, ZENG Y, YU M, et al. Recent smart methods for achieving high-energy asymmetric supercapacitors[J]. Small Methods, 2018, 2(2):1700230.
[4] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2014, 10(12):4863-4868.
[5] 雷文,赵晓梅,何平,等. 碳基超级电容器电极材料的研究进展[J]. 化学通报, 2013, 76(11):981-987. LEI W, ZHAO X M, HE P, et al. Research progress of carbon-based electrode materials of supercapacitors[J]. Chemistry Bulletin Chem Bull, 2013, 76(11):981-987.
[6] WU X, HAN Z, ZHENG X, et al. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties[J]. Nano Energy, 2017, 31:410-417.
[7] FENG D Y, SONG Y, HUANG Z H, et al. Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor[J]. Journal of Power Sources, 2016, 324:788-797.
[8] 周健,谢林华,豆义波,等.MOFs基材料在超级电容器中的应用[J].化工进展,2016, 35(9):2830-2838. ZHOU J, XIE L H, DOU Y B, et al. MOFs-based materials for supercapacitor[J].Chemical Industry and Engineering Progress, 2016, 35(9):2830-2838.
[9] O'KEEFFE M, YAGHI O M. Deconstructing the crystal struct-ures of metal-organic frameworks and related materials into their underlying nets[J]. Chemical Reviews, 2012, 112(2):675-702.
[10] JIAO Y, PEI J, YAN C, et al. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid deceives[J]. Journal of Materials Chemistry A, 2016, 4(34):13344-13351.
[11] SALUNKHE R R, KANETI Y V, YAMAUCHI Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications:progress and prospects[J]. ACS Nano, 2017, 11(6):5293-5308.
[12] PAZ F A, KLINOWSKI J, VILELA S M, et al. Ligand design for functional metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41(3):1088-1110.
[13] ZOU G, HOU H, GE P, et al. Metal-organic framework-derived materials for sodium energy storage[J]. Small, 2018, 14(3):1702648.
[14] HE Y, ZHOU W, QIAN G, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16):5657-5678.
[15] 李立博,王勇,王小青,等.柔性金属有机骨架材料(MOFs)用于气体吸附分离[J].化工进展, 2016, 35(6):1794-1803. LI L B, WANG Y, WANG X Q, et al.Selective gas adsorption and separation in flexible metal-organic frameworks[J].Chem Ind Eng Prog, 2016, 35(6):1794-1803.
[16] RAJAK R, SARAF M, MOHAMMAD A, et al. Design and construction of ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications[J]. Journal of Materials Chemistry A, 2017, 5(34):17998-18011.
[17] 陈芝杰,陈俊英,李映伟.金属有机骨架基催化剂在加氢反应中的应用[J]. 催化学报, 2017, 38(7):1108-1126. CHEN Z J,CHE J Y,LI Y W. Metal-organic-framework-based catalysts for hydrogenation reactions[J]. Chinese Journal of Catalysis, 2017, 38(7):1108-1126.
[18] CHEN W H, VAZQUEZ-GONZALEZ M, KOZELL A, et al. Cu2+-modified metal-organic framework nanoparticles:a peroxidase-mimicking nanoenzyme[J]. Small, 2017, 14(5):1703149.
[19] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149):1230444.
[20] HORCAJADA P,CHALATI T,SERRE C,et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9(2):172-178.
[21] KE F S, WU Y S, DENG H. Metal-organic frameworks for lithium ion batteries and supercapacitors[J]. Journal of Solid State Chemistry, 2015, 223:109-121.
[22] XIA W, QU C, LIANG Z, et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite[J]. Nano Letters, 2017, 17(5):2788-2795.
[23] CHEN T, PENG H, DURSTOCK M, et al. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets[J]. Scientific Reports, 2014, 4:3612.
[24] XU C, XU B, GU Y, et al. Graphene-based electrodes for elect-rochemical energy storage[J]. Energy & Environmental Science, 2013, 6(5):1388-1414.
[25] FAN W, XIA Y Y, TJIU W W, et al. Nitrogen-doped grap-hene hollow nanospheres as novel electrode materials for supercapacitor applications[J]. Journal of Power Sources, 2013, 243:973-981.
[26] WANG J G, YANG Y, HUANG Z H, et al. A high-perfor-mance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes[J]. Carbon, 2013, 61:190-199.
[27] HUANG J, XU P, CAO D, et al. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density[J]. Journal of Power Sources, 2014, 246:371-376.
[28] XUE T, LEE J M. Capacitive behavior of mesoporous Co(OH)2 nanowires[J]. Journal of Power Sources, 2014, 245:194-202.
[29] HAO C, WEN F, XIANG J, et al. Controlled incorporation of Ni(OH)2 nanoplates into flowerlike MoS2 nanosheets for flexible all-solid-state supercapacitors[J].Advanced Functional Mate-rials, 2014, 24(42):6700-6707.
[30] ZHANG F, XIAO F, DONG Z H, et al. Synthesis of polypy-rrole wrapped graphene hydrogels composites as supercapacitor electrodes[J]. Electrochimica Acta, 2013, 114:125-132.
[31] CAO H, ZHOU X, ZHANG Y, et al. Microspherical polyani-line/graphene nanocomposites for high performance superca-pacitors[J]. Journal of Power Sources, 2013, 243:715-720.
[32] DIAZ R, ORCAJO M G, BOTAS J A, et al. Co8-MOF-5 as electrode for supercapacitors[J]. Materials Letters, 2012, 68:126-128.
[33] LEE D Y, YOON S J, SHRESTHA N K, et al. Unusual energy storage and charge retention in Co-based metal-organic-frameworks[J]. Microporous & Mesoporous Materials, 2012, 153(3):163-165.
[34] LEE D Y, SHINDE D V, KIM E K, et al. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology[J]. Microporous & Mesoporous Materials, 2013, 171(10):53-57.
[35] YANG J, ZHENG C, XIONG P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. Journal of Materials Chemistry A, 2014, 2(44):19005-19010.
[36] QU C, JIAO Y, ZHAO B, et al. Nickel-based pillared MOFs for high-performance supercapacitors:design, synthesis and stability study[J]. Nano Energy, 2016, 26:66-73.
[37] CHOI K M, JEONG H M, PARK J H, et al. Supercapacitors of nanocrystalline metal-organic frameworks.[J]. ACS Nano, 2014, 8(7):7451-7457.
[38] ZHANG D, SHI H, ZHANG R, et al. Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances[J]. Rsc Adv-ances, 2015, 5(72):58772-58776.
[39] SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials, 2017, 16(2):220-224.
[40] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2014, 10(12):4863-4868.
[41] LIU B, SHIOYAMA H, AKITA T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society, 2008, 130(16):5390-5391.
[42] SALUNKHE R, KAMACHI Y, TORAD N, et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons[J]. Journal of Materials Chemistry A, 2014, 2(46):19848-19854.
[43] TORAD N L, SALUNKHE R R, LI Y, et al. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67[J]. Chemistry, 2014, 20(26):7895-7900.
[44] AMALI A J, SUN J K, XU Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chemical Communications, 2014, 50(13):1519-1522.
[45] BAO W, MONDAL A K, XU J, et al. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors[J]. Journal of Power Sources, 2016, 325:286-291.
[46] YU F, WANG T, WEN Z, et al. High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound[J]. Journal of Power Sources, 2017, 364:9-15.
[47] LIU B, SHIOYAMA H, JIANG H, et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48(2):456-463.
[48] HU J, WANG H, GAO Q, et al. Porous carbons prepared by using metal-organic framework as the precursor for superca-pacitors[J]. Carbon, 2010, 48(12):3599-3606.
[49] CHANG T H, YOUNG C, LEE M H, et al. Synthesis of MOF-525 derived nanoporous carbons with different particle sizes for supercapacitor application.[J]. Chemistry-An Asian Journal, 2017, 12(21):2857-2862.
[50] HAO F, LI L, ZHANG X, et al. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micr-opolyhedra by direct carbonization of zeolitic imidazolate fram-ework-11[J]. Materials Research Bulletin, 2015, 66:88-95.
[51] GUO B, YANG Y, HU Z, et al. Redox-active organic mole-cules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for superca-pacitor[J]. Electrochimica Acta, 2017, 223:74-84.
[52] PANG H, GAO F, CHEN Q, et al. Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis[J]. Dalton Trans, 2012, 41(19):5862-5868.
[53] MENG F, FANG Z, LI Z, et al. Porous Co3O4 materials prep-ared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(24):7235-7241.
[54] ZHANG Y Z, WANG Y, XIE Y L, et al. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors[J]. Nanoscale, 2014, 6(23):14354-14359.
[55] HAN Y, ZHANG S, SHEN N, et al. MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors[J]. Materials Letters, 2016, 188:1-4.
[56] ZHANG F, BAO Y, MA S, et al. Hierarchical flower-like nickel phenylphosphonate microspheres and their calcined derivatives for supercapacitor electrode[J]. Journal of Materials Chemistry A, 2017, 5(16):7474-7481.
[57] CHEN S, XUE M, LI Y, et al. Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for superc-apacitors[J]. Inorganic Chemistry Frontiers, 2015, 2(2):177-183.
[58] DONG Y, WANG Y, XU Y, et al. Facile synthesis of hierar-chical nanocage MnCo2O4, for high performance supercapacitor[J]. Electrochimica Acta, 2017, 225:39-46.
[59] GUAN C, LIU X, REN W, et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J].Advanced Energy Mate-rials, 2017, 7(8):1602391.
[60] WANG Y C, LI W B, ZHAO L, et al. MOF-derived binary mixed metal/metal oxide@carbon nanoporous materials and their novel supercapacitive performances[J].Physical Chemistry Chemical Physics, 2016, 18(27):17941-17948.
[61] RAOOF J B, HOSSEINI S R, OJINI R, et al. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction[J]. Energy, 2015, 90(4):1075-1081.
[62] DAI E, XU J, QIU J, et al. Co@carbon and Co3O4@carbon nanocomposites derived from a single MOF for supercapacitors[J]. Sci Rep, 2017, 7(1):12588.
[63] SRIMUK P, LUANWUTHI S, KRITTAYAVATHANANON A, et al. Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper[J]. Electrochimica Acta, 2015, 157:69-77.
[64] JAYAKUMAR A, ANTONY R P, WANG R, et al. MOF-derived hollow cage Nix Co3-xO4 and their synergy with graphene for outstanding supercapacitors[J]. Small, 2017, 13(11):1603102.
[65] MAHMOOD A, ZOU R, WANG Q, et al. Nanostructured electrode materials derived from metal-organic framework xerogels for high energy density asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2015, 8(3):2148-2157.
[66] WANG L, FENG X, REN L, et al. Flexible solid-state superc-apacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society, 2015, 137(15):4920-4923.
[67] YIN D, HUANG G, SUN Q, et al. RGO/Co3O4, composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes[J]. Electrochimica Acta, 2016, 215:410-419.
[68] YI H, WANG H, JING Y, et al. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life[J]. Journal of Power Sources, 2015, 285:281-290.
[1] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[2] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[3] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[4] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[5] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[6] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[7] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[8] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[9] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[10] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[11] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[12] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[13] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[14] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[15] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn