Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 50-56    DOI: 10.11868/j.issn.1001-4381.2018.000566
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
表面活性剂对高浓度石墨烯水分散液制备的影响
王晨, 燕绍九, 南文争, 陈翔
中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Effect of surfactants on preparation of high concentration graphene aqueous dispersion
WANG Chen, YAN Shao-jiu, NAN Wen-zheng, CHEN Xiang
Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4961 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 分别选取阴离子型、阳离子型和非离子型3种类型表面活性剂,通过紫外可见光谱研究表面活性剂结构和浓度对高压均质-液相剥离法制备的石墨烯水分散液浓度的影响。通过高分辨透射电镜和激光粒度仪对所制备的石墨烯的品质进行分析。结果表明:长的疏水链段、双键和苯环官能团是促进表面活性剂作用发挥的关键结构,表面活性剂最优浓度略高于其临界胶束浓度。在测试范围内,Tween80效果最佳,其最佳作用浓度为0.012mmol·L-1,所得石墨烯水分散液浓度为564.3mg·L-1。表面活性剂的结构和浓度对石墨烯的品质无明显影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晨
燕绍九
南文争
陈翔
关键词 表面活性剂结构浓度石墨烯水分散液    
Abstract:The effects of surfactant structure and concentration on the preparation of high concent-ration graphene aqueous dispersion by HPH-LPE were systematically studied by UV-Vis spectra, TEM and laser granularity analyser. Three different types of surfactants were used:anionic,cationic and non-ionic. It is found that long hydrophobic segment, double bond and benzene ring structure is the key structure that can promote the performance of the surfactant and the optimum concentration of the surfactant is slightly higher than critical micelle concentration (C).In the test range, Tween80 presents the best performance. The optimum concentration is 0.012mmol·L-1,and the obtained graphene aqueous dispersion concentration is 564.3mg·L-1. However, it seems no significant effect on the graphene quality of surfactant structure and concentration.CMC
Key wordssurfactant    structure    concentration    graphene aqueous dispersion
收稿日期: 2018-05-15      出版日期: 2019-07-19
中图分类号:  TQ127.1+1  
通讯作者: 燕绍九(1980-),男,研究员,博士,主要从事纳米材料、磁性材料及石墨烯应用方面的研究工作,联系地址:北京81信箱72分箱(100095),shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
WANG Chen, YAN Shao-jiu, NAN Wen-zheng, CHEN Xiang. Effect of surfactants on preparation of high concentration graphene aqueous dispersion. Journal of Materials Engineering, 2019, 47(7): 50-56.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000566      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/50
[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[2] BOLOTIN K I,SIKES K J,JIANG Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Communication,2008,146(9/10):351-355.
[3] 燕绍九,杨程,洪起虎,等.石墨烯增强铝基纳米复合材料的研究[J].材料工程,2014(4):1-6. YAN S J,YANG C,HONG Q H,at al.Research of graphene-reinforced aluminum matrix nanocomposites[J].Journal of Materials Engineering,2014(4):1-6.
[4] BUNCH J S,VERBRIDGE S S,ALDEN J S,et al.Impermeable atomic membranes from graphene sheets[J].Nano Letter,2008,8(8):2458-2462.
[5] BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letter,2008,8(3):902-907.
[6] PENG S K,YAN S J,WANG N,et al.Fluorinated graphene/sulfur hybrid cathode for high energy and high power density lithium primary batteries[J].RSC Advances,2018,8(23):12701-12707.
[7] BOURLINOS A B,GEORGAKILAS V,ZBORIL R,et al.Liquid-phase exfoliation of graphite towards solubilized graphenes[J].Small,2009,5(16):1841-1845.
[8] HERNANDEZ Y,NICOLOSI V,LOTYA M,et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature Nanotechnology,2008,3(9):563-568.
[9] SHANG J,XUE F,DING E.Facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogeniza-tion[J].Chemical Communications,2015,51:15811-15814.
[10] NADCKEEN T J,DAMM C,WALER J.Delamination of graphite in a high pressure homogenizer[J].RSC Adv,2015,5(71):57328-57338.
[11] TEXTER J.Graphene dispersions[J].Current Opinion in Colloid & Interface Science,2014,19(2):163-174.
[12] WANG S,ZHANG Y,ABIDI N,et al.Wettability and surface free energy of graphene films[J].Langmuir,2009,25(18):11078-11081.
[13] DU W,JIANG X,ZHU L.From graphite to graphene:direct liquid-phase exfoliation of graphite to produce single- and few layered pristine graphene[J].Journal of Materials Chemistry A,2013,1:10592-10606.
[14] LOTYA M,KING P J,KHAN U,et al.High-concentration,surfactant-stabilized graphene dispersions[J].ACS Nano,2010,4(6):3155-3162.
[15] LOTYA M,HERNANDEZ Y,KING P J,et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J].Journal of American Chemical Society,2009,131(10):3611-3620.
[16] YANG H,HERNANDEZ Y,SCHLIERF A,et al.A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt[J].Carbon,2013,53:357-365.
[17] KUMAR V,PARASCHINOIU M,NIGAN K D P.Single-phase fluid flow and mixing in microchannels[J].Chemical Engineering Science,2011,66(7):1329-1373.
[18] RAMALINGAM P,PUSULURI S T,PERIASAMY S,et al.Role of deoxy group on the high concentration of graphene in surfactant/water media[J].RSC Advances,2013,3(7):2369-2378.
[19] SCHLIERF A,YANG H,GEBREMEDHN E,et al.Nanoscale insight into the exfoliation mechanism of graphene with organic dyes:effect of charge,dipole and molecular structure[J].Nanoscale,2013,5(10):4205-4216.
[20] 王晨,燕绍九,南文争,等.高浓度石墨烯水分散液的制备与表征[J].材料工程,2019,47(4):1-6. WANG C,YAN S J,NAN W Z,at al.Preparation and characterization of high concentration graphene aqueous disper-sion[J].Journal of Materials Engineering,2019,47(4):1-6.
[21] KUMAR P,BOHIDAR H B.Aqueous dispersion stability of multi-carbon nanoparticles in anionic,cationic,neutral,bile salt and pulmonary surfactant solutions[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,361:13-24.
[22] JOHNSON D W,DOBSON B P,COLEMAN K S.A manu-facturing perspective on graphene dispersions[J].Current Opinion in Colloid & Interface Science,2015,20(5):367-382.
[23] KUMAR P,PANI B,BATRA H,et al.The influence of different surfactants on the dispersion behavior of single wall carbon nanotube (SWNT)[J].International Journal of Engineering Technology and Sciences,2014,5(2):16-21.
[24] SHIN J Y,PREMKUMAR T,GECKELER K E.Dispersion of single-walled carbon nanotubes by using surfactants:are the type and concentration important?[J].Chemistry,2008,14(20):6044-6048.
[25] SMITH R J,LOTYA M,COLEMAN J N.The importance of repulsive potential barriers for the dispersion of graphene using surfactants[J].New Journal of Physics,2010,12(12):135-141.
[1] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58.
[2] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[3] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[4] 孙卫青, 程伟. 基于响应面全局优化技术的蜂窝板材料性能参数修正[J]. 材料工程, 2019, 47(5): 159-166.
[5] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[6] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[7] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[10] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
[11] 董雪, 马爽, 武晓霞, 那日苏. Fe52T2(T=Cr,Mn,Co,Ni)合金bcc与fcc相结构的第一性原理研究[J]. 材料工程, 2019, 47(3): 147-153.
[12] 何烨, 肖建文, 姚烛威, 符应飘, 徐樑华, 曹维宇. 碳纤维表面物理结构对复合材料界面剪切强度的影响[J]. 材料工程, 2019, 47(2): 146-152.
[13] 李莹莹, 王昉, 刘其春, 张东敏, 张雪, 马青玉, 顾正桂. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
[14] 何清洋, 朱月华, 卓宁泽, 王海波. K2SiF6:Mn4+发光粉的合成及性能研究[J]. 材料工程, 2018, 46(8): 51-56.
[15] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn