Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 50-56    DOI: 10.11868/j.issn.1001-4381.2018.000566
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
表面活性剂对高浓度石墨烯水分散液制备的影响
王晨, 燕绍九, 南文争, 陈翔
中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Effect of surfactants on preparation of high concentration graphene aqueous dispersion
WANG Chen, YAN Shao-jiu, NAN Wen-zheng, CHEN Xiang
Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4961 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 分别选取阴离子型、阳离子型和非离子型3种类型表面活性剂,通过紫外可见光谱研究表面活性剂结构和浓度对高压均质-液相剥离法制备的石墨烯水分散液浓度的影响。通过高分辨透射电镜和激光粒度仪对所制备的石墨烯的品质进行分析。结果表明:长的疏水链段、双键和苯环官能团是促进表面活性剂作用发挥的关键结构,表面活性剂最优浓度略高于其临界胶束浓度。在测试范围内,Tween80效果最佳,其最佳作用浓度为0.012mmol·L-1,所得石墨烯水分散液浓度为564.3mg·L-1。表面活性剂的结构和浓度对石墨烯的品质无明显影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晨
燕绍九
南文争
陈翔
关键词 表面活性剂结构浓度石墨烯水分散液    
Abstract:The effects of surfactant structure and concentration on the preparation of high concent-ration graphene aqueous dispersion by HPH-LPE were systematically studied by UV-Vis spectra, TEM and laser granularity analyser. Three different types of surfactants were used:anionic,cationic and non-ionic. It is found that long hydrophobic segment, double bond and benzene ring structure is the key structure that can promote the performance of the surfactant and the optimum concentration of the surfactant is slightly higher than critical micelle concentration (C).In the test range, Tween80 presents the best performance. The optimum concentration is 0.012mmol·L-1,and the obtained graphene aqueous dispersion concentration is 564.3mg·L-1. However, it seems no significant effect on the graphene quality of surfactant structure and concentration.CMC
Key wordssurfactant    structure    concentration    graphene aqueous dispersion
收稿日期: 2018-05-15      出版日期: 2019-07-19
中图分类号:  TQ127.1+1  
通讯作者: 燕绍九(1980-),男,研究员,博士,主要从事纳米材料、磁性材料及石墨烯应用方面的研究工作,联系地址:北京81信箱72分箱(100095),shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
WANG Chen, YAN Shao-jiu, NAN Wen-zheng, CHEN Xiang. Effect of surfactants on preparation of high concentration graphene aqueous dispersion. Journal of Materials Engineering, 2019, 47(7): 50-56.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000566      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/50
[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[2] BOLOTIN K I,SIKES K J,JIANG Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Communication,2008,146(9/10):351-355.
[3] 燕绍九,杨程,洪起虎,等.石墨烯增强铝基纳米复合材料的研究[J].材料工程,2014(4):1-6. YAN S J,YANG C,HONG Q H,at al.Research of graphene-reinforced aluminum matrix nanocomposites[J].Journal of Materials Engineering,2014(4):1-6.
[4] BUNCH J S,VERBRIDGE S S,ALDEN J S,et al.Impermeable atomic membranes from graphene sheets[J].Nano Letter,2008,8(8):2458-2462.
[5] BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letter,2008,8(3):902-907.
[6] PENG S K,YAN S J,WANG N,et al.Fluorinated graphene/sulfur hybrid cathode for high energy and high power density lithium primary batteries[J].RSC Advances,2018,8(23):12701-12707.
[7] BOURLINOS A B,GEORGAKILAS V,ZBORIL R,et al.Liquid-phase exfoliation of graphite towards solubilized graphenes[J].Small,2009,5(16):1841-1845.
[8] HERNANDEZ Y,NICOLOSI V,LOTYA M,et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature Nanotechnology,2008,3(9):563-568.
[9] SHANG J,XUE F,DING E.Facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogeniza-tion[J].Chemical Communications,2015,51:15811-15814.
[10] NADCKEEN T J,DAMM C,WALER J.Delamination of graphite in a high pressure homogenizer[J].RSC Adv,2015,5(71):57328-57338.
[11] TEXTER J.Graphene dispersions[J].Current Opinion in Colloid & Interface Science,2014,19(2):163-174.
[12] WANG S,ZHANG Y,ABIDI N,et al.Wettability and surface free energy of graphene films[J].Langmuir,2009,25(18):11078-11081.
[13] DU W,JIANG X,ZHU L.From graphite to graphene:direct liquid-phase exfoliation of graphite to produce single- and few layered pristine graphene[J].Journal of Materials Chemistry A,2013,1:10592-10606.
[14] LOTYA M,KING P J,KHAN U,et al.High-concentration,surfactant-stabilized graphene dispersions[J].ACS Nano,2010,4(6):3155-3162.
[15] LOTYA M,HERNANDEZ Y,KING P J,et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J].Journal of American Chemical Society,2009,131(10):3611-3620.
[16] YANG H,HERNANDEZ Y,SCHLIERF A,et al.A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt[J].Carbon,2013,53:357-365.
[17] KUMAR V,PARASCHINOIU M,NIGAN K D P.Single-phase fluid flow and mixing in microchannels[J].Chemical Engineering Science,2011,66(7):1329-1373.
[18] RAMALINGAM P,PUSULURI S T,PERIASAMY S,et al.Role of deoxy group on the high concentration of graphene in surfactant/water media[J].RSC Advances,2013,3(7):2369-2378.
[19] SCHLIERF A,YANG H,GEBREMEDHN E,et al.Nanoscale insight into the exfoliation mechanism of graphene with organic dyes:effect of charge,dipole and molecular structure[J].Nanoscale,2013,5(10):4205-4216.
[20] 王晨,燕绍九,南文争,等.高浓度石墨烯水分散液的制备与表征[J].材料工程,2019,47(4):1-6. WANG C,YAN S J,NAN W Z,at al.Preparation and characterization of high concentration graphene aqueous disper-sion[J].Journal of Materials Engineering,2019,47(4):1-6.
[21] KUMAR P,BOHIDAR H B.Aqueous dispersion stability of multi-carbon nanoparticles in anionic,cationic,neutral,bile salt and pulmonary surfactant solutions[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,361:13-24.
[22] JOHNSON D W,DOBSON B P,COLEMAN K S.A manu-facturing perspective on graphene dispersions[J].Current Opinion in Colloid & Interface Science,2015,20(5):367-382.
[23] KUMAR P,PANI B,BATRA H,et al.The influence of different surfactants on the dispersion behavior of single wall carbon nanotube (SWNT)[J].International Journal of Engineering Technology and Sciences,2014,5(2):16-21.
[24] SHIN J Y,PREMKUMAR T,GECKELER K E.Dispersion of single-walled carbon nanotubes by using surfactants:are the type and concentration important?[J].Chemistry,2008,14(20):6044-6048.
[25] SMITH R J,LOTYA M,COLEMAN J N.The importance of repulsive potential barriers for the dispersion of graphene using surfactants[J].New Journal of Physics,2010,12(12):135-141.
[1] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[2] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[3] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[4] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[5] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[6] 陈子木, 胡正伟, 王倩妮, 史亦韦. 薄壁结构工业CT尺寸测量误差与极限[J]. 材料工程, 2020, 48(8): 169-176.
[7] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[8] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[9] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[10] 王欣, 陈星, 胡仁高, 胡博, 许春玲, 汤智慧, 古远兴. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程, 2020, 48(6): 156-162.
[11] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[12] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[13] 李英民, 马鸣檀, 任玉艳, 刘桐宇. 稀土La掺杂Mg2Si的几何结构、弹性性能和电子结构的第一性原理研究[J]. 材料工程, 2020, 48(4): 100-107.
[14] 李红玑, 王发良, 李享, 杨靖, 宋经华, 李波. 活化凹凸棒石对多级孔分子筛合成种类和孔道结构的影响[J]. 材料工程, 2020, 48(4): 158-164.
[15] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn