Abstract:In order to further explore the mechanism during electron beam welding, electron beam welding was carried out on a 10mm 2219 aluminum alloy. A three-dimensional electron beam welding model in which volume of fluid (VOF) was combined with dynamic heat source was established using numerical software Fluent to simulate the coupling between keyhole and molten pool. The process and formation of vortex in molten pool were analyzed, the interaction between electron beam and keyhole was also identified and discussed. The results show that the molten pool is divided into three parts through the analysis of liquid metals. The liquid metal in zone Ⅰ maintains the stability of the volume of the molten pool. The surface of the molten pool is enlarged by vortex in zone Ⅱ. Vortex in zone Ⅲ plays an important role in causing the keyhole to collapse. The coupling analysis of electron beam and keyhole wall shows that the electron beam is not uniformly distributed on the keyhole wall,which results in a certain hysteresis at the bottom of keyhole.
杨子酉, 房玉超, 何景山. 电子束焊接熔池周期性波动的数值模拟[J]. 材料工程, 2019, 47(9): 78-83.
YANG Zi-you, FANG Yu-chao, HE Jing-shan. Numerical simulation of periodic fluctuation in electron beam welding pool. Journal of Materials Engineering, 2019, 47(9): 78-83.
[1] 马正斌,刘金合,卢施宇,等. 电子束焊接技术研究及进展[J]. 电焊机, 2012, 42(4):93-95. MA Z B, LIU J H, LU S Y, et al. Research and development of electron beam welding[J]. Electric Welding Machine, 2012, 42(4):93-95.
[2] 周广德. 电子束焊接技术的特点和应用[J]. 电工电能新技术, 1994(4):25-27. ZHOU G D. Specialities and applications of electron beam welding[J]. Advanced Technology of Electrical Engineering and Energy, 1994(4):25-27.
[3] GOLDAK J, CHAKRAVARTI A, BIBBY M. New finite elem-ent model for welding heat sources[J]. Metallurgical Transa-ctions B, 1984, 15(2):299-301.
[4] CHANG W S, NA S J. A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining[J]. Journal of Materials Processing Technology, 2002, 120(1):208-210.
[5] 吴甦,赵海燕,王煜,等. 高能束焊接数值模拟中的新型热源模型[J]. 焊接学报, 2004, 25(1):91-94. WU S, ZHAO H Y, WANG Y, et al. A new heat source model in numerical simulation of high energy beam welding[J]. Transa-ctions of the China Welding Institution, 2004, 25(1):91-94.
[6] WU C S, ZHANG T, FENG Y H. Numerical analysis of the heat and fluid flow in a weld pool with a dynamic keyhole[J]. International Journal of Heat and Fluid Flow, 2013, 40(4):186-188.
[7] 刘敏,康继东,李瑜,等. Ti合金电子束焊接三维温度场计算[J].金属学报,2001, 37(4):301-304. LIU M, KANG J D, LI Y, et al. Calculation of 3-D EBW temperature field in titantium alloy plates[J]. Acta Metallurgica Sinica, 2001, 37(4):301-304.
[8] 武传松,王怀刚,张明贤.小孔等离子弧焊接热场瞬时演变过程的数值分析[J]. 金属学报, 2006, 42(3):311-313. WU C S, WANG H G, ZHANG M X. Numerical analysis of transient development of temperature field in keyhole plasma arc welding[J]. Acta Metallurgica Sinica, 2006, 42(3):311-313.
[9] 罗怡,刘金合,叶宏,等. 镁合金真空电子束深熔焊接及焊缝成形数值模拟[J]. 焊接学报, 2010, 31(6):65-67. LUO Y, LIU J H, YE H, et al. Numerical simulation on elect-ron beam deep penetration welding and weld appearance of magnesium alloy[J]. Transactions of the China Welding Instit-ution, 2010, 31(6):65-67.
[10] ZHANG L J, ZHANG J X, GUMENYUK A, et al. Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser[J]. Journal of Materials Processing Technology, 2014, 214(8):1710-1712.
[11] SOHAIL M, HAN S W, NA S J, et al. Numerical investi-gation of energy input characteristics for high-power fiber laser welding at different positions[J]. International Journal of Heat and Mass Transfer, 2015, 80(11):931-933.
[12] 史平安,万强,庞胜永,等. 激光深熔焊中熔池-小孔的动态行为模拟[J]. 材料热处理学报, 2015, 36(7):228-230. SHI P A, WAN Q, PANG S Y, et al. Modeling of dynamic behavior of weld pool and keyhole in deep penetration laser welding[J]. Transactions of Materials and Heat Treatment, 2015, 36(7):228-230.
[13] 史平安,万强,颜怡霞,等. 焊接熔池流体动力学行为的数值模拟和实验研究[J]. 材料热处理学报, 2017, 38(8):134-137. SHI P A, WAN Q, YAN Y X, et al Simulation and experime-ntal study on fluid dynamics behavior of welding pool and keyhole in laser welding process[J]. Transactions of Materials and Heat Treatment, 2017, 38(8):134-137.
[14] WU D S, HUA X M, LI F, et al. Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy[J]. International Journal of Heat and Mass Transfer, 2017, 113(5):730-735.
[15] ZHANG D, LI C L, LIU X X, et al. Numerical study of spatter formation during fiber laser welding of aluminum alloy[J]. Journal of Manufacturing Processes, 2018, 31(1):72-76.
[16] SEMAK V, MATSUNAWA A. The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D:Applied Physics, 1997, 30(18):2541-2544.
[17] 胡雪.激光填粉焊接熔池流动数值模拟[D].哈尔滨:哈尔滨工业大学, 2016. HU X. Numerical simulation of weld pool flow in laser welding with powder feed[D]. Harbin:Harbin Institute of Technology, 2016.
[18] LIU C C, HE J S. Numerical analysis of fluid transport pheno-mena and spiking defect formation during vacuum electron beam welding of 2219 aluminum alloy plate[J]. Vacuum, 2016, 132(6):73-78.
[19] 叶飞. 非稳态涡流运动及其产生机理[D]. 天津:天津大学, 2010. YE F. Unsteady vortex motion and formation mechanism[D]. Tianjin:Tianjin University, 2010.
[20] 武传松,孟祥萌,陈姬,等. 熔焊热过程与熔池行为数值模拟的研究进展[J]. 机械工程学报, 2018, 54(2):1-11. WU C S, MENG X M, CHEN J,et al. Progress in numerical simu-lation of thermal processes and weld pool behaviors in fusion welding[J]. Journal of Mechanical Engineering, 2018, 54(2):1-11.