Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 78-83    DOI: 10.11868/j.issn.1001-4381.2018.000573
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电子束焊接熔池周期性波动的数值模拟
杨子酉, 房玉超, 何景山
哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001
Numerical simulation of periodic fluctuation in electron beam welding pool
YANG Zi-you, FANG Yu-chao, HE Jing-shan
Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(2295 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为了更深入地探究电子束焊接过程中的机理问题,利用数值软件Fluent,对10mm厚的2219铝合金电子束焊接熔池进行三维瞬态模拟。分析电子束焊接进入准稳态后熔池中涡流的变化规律和产生原因,并结合电子束与匙孔壁面相互作用进行讨论。结果表明:电子束焊接进入准稳态后熔池呈周期性波动;根据液态金属流动情况可将焊接熔池分为3个区域,区域Ⅰ中的液态金属维持了熔池体积的稳定,区域Ⅱ中的涡流起到扩大熔池表面的作用,区域Ⅲ中的涡流促使匙孔坍塌;通过对电子束与匙孔壁面的耦合分析可知,电子束在匙孔壁面上并不是均匀分布的,这造成了匙孔底部具有一定的滞后性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨子酉
房玉超
何景山
关键词 电子束焊接熔池行为涡流周期性波动热源与匙孔耦合    
Abstract:In order to further explore the mechanism during electron beam welding, electron beam welding was carried out on a 10mm 2219 aluminum alloy. A three-dimensional electron beam welding model in which volume of fluid (VOF) was combined with dynamic heat source was established using numerical software Fluent to simulate the coupling between keyhole and molten pool. The process and formation of vortex in molten pool were analyzed, the interaction between electron beam and keyhole was also identified and discussed. The results show that the molten pool is divided into three parts through the analysis of liquid metals. The liquid metal in zone Ⅰ maintains the stability of the volume of the molten pool. The surface of the molten pool is enlarged by vortex in zone Ⅱ. Vortex in zone Ⅲ plays an important role in causing the keyhole to collapse. The coupling analysis of electron beam and keyhole wall shows that the electron beam is not uniformly distributed on the keyhole wall,which results in a certain hysteresis at the bottom of keyhole.
Key wordselectron beam welding    molten pool behaviour    vortex    periodic fluctuation    heat source-keyhole coupling
收稿日期: 2018-05-09      出版日期: 2019-09-18
中图分类号:  TG456.3  
基金资助: 
通讯作者: 何景山(1963-),男,教授,博士,研究方向为电子束焊接,联系地址:哈尔滨工业大学材料学院613室(150001),E-mail:jingshanhlj@hit.edu.cn     E-mail: jingshanhlj@hit.edu.cn
引用本文:   
杨子酉, 房玉超, 何景山. 电子束焊接熔池周期性波动的数值模拟[J]. 材料工程, 2019, 47(9): 78-83.
YANG Zi-you, FANG Yu-chao, HE Jing-shan. Numerical simulation of periodic fluctuation in electron beam welding pool. Journal of Materials Engineering, 2019, 47(9): 78-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000573      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/78
[1] 马正斌,刘金合,卢施宇,等. 电子束焊接技术研究及进展[J]. 电焊机, 2012, 42(4):93-95. MA Z B, LIU J H, LU S Y, et al. Research and development of electron beam welding[J]. Electric Welding Machine, 2012, 42(4):93-95.
[2] 周广德. 电子束焊接技术的特点和应用[J]. 电工电能新技术, 1994(4):25-27. ZHOU G D. Specialities and applications of electron beam welding[J]. Advanced Technology of Electrical Engineering and Energy, 1994(4):25-27.
[3] GOLDAK J, CHAKRAVARTI A, BIBBY M. New finite elem-ent model for welding heat sources[J]. Metallurgical Transa-ctions B, 1984, 15(2):299-301.
[4] CHANG W S, NA S J. A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining[J]. Journal of Materials Processing Technology, 2002, 120(1):208-210.
[5] 吴甦,赵海燕,王煜,等. 高能束焊接数值模拟中的新型热源模型[J]. 焊接学报, 2004, 25(1):91-94. WU S, ZHAO H Y, WANG Y, et al. A new heat source model in numerical simulation of high energy beam welding[J]. Transa-ctions of the China Welding Institution, 2004, 25(1):91-94.
[6] WU C S, ZHANG T, FENG Y H. Numerical analysis of the heat and fluid flow in a weld pool with a dynamic keyhole[J]. International Journal of Heat and Fluid Flow, 2013, 40(4):186-188.
[7] 刘敏,康继东,李瑜,等. Ti合金电子束焊接三维温度场计算[J].金属学报,2001, 37(4):301-304. LIU M, KANG J D, LI Y, et al. Calculation of 3-D EBW temperature field in titantium alloy plates[J]. Acta Metallurgica Sinica, 2001, 37(4):301-304.
[8] 武传松,王怀刚,张明贤.小孔等离子弧焊接热场瞬时演变过程的数值分析[J]. 金属学报, 2006, 42(3):311-313. WU C S, WANG H G, ZHANG M X. Numerical analysis of transient development of temperature field in keyhole plasma arc welding[J]. Acta Metallurgica Sinica, 2006, 42(3):311-313.
[9] 罗怡,刘金合,叶宏,等. 镁合金真空电子束深熔焊接及焊缝成形数值模拟[J]. 焊接学报, 2010, 31(6):65-67. LUO Y, LIU J H, YE H, et al. Numerical simulation on elect-ron beam deep penetration welding and weld appearance of magnesium alloy[J]. Transactions of the China Welding Instit-ution, 2010, 31(6):65-67.
[10] ZHANG L J, ZHANG J X, GUMENYUK A, et al. Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser[J]. Journal of Materials Processing Technology, 2014, 214(8):1710-1712.
[11] SOHAIL M, HAN S W, NA S J, et al. Numerical investi-gation of energy input characteristics for high-power fiber laser welding at different positions[J]. International Journal of Heat and Mass Transfer, 2015, 80(11):931-933.
[12] 史平安,万强,庞胜永,等. 激光深熔焊中熔池-小孔的动态行为模拟[J]. 材料热处理学报, 2015, 36(7):228-230. SHI P A, WAN Q, PANG S Y, et al. Modeling of dynamic behavior of weld pool and keyhole in deep penetration laser welding[J]. Transactions of Materials and Heat Treatment, 2015, 36(7):228-230.
[13] 史平安,万强,颜怡霞,等. 焊接熔池流体动力学行为的数值模拟和实验研究[J]. 材料热处理学报, 2017, 38(8):134-137. SHI P A, WAN Q, YAN Y X, et al Simulation and experime-ntal study on fluid dynamics behavior of welding pool and keyhole in laser welding process[J]. Transactions of Materials and Heat Treatment, 2017, 38(8):134-137.
[14] WU D S, HUA X M, LI F, et al. Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy[J]. International Journal of Heat and Mass Transfer, 2017, 113(5):730-735.
[15] ZHANG D, LI C L, LIU X X, et al. Numerical study of spatter formation during fiber laser welding of aluminum alloy[J]. Journal of Manufacturing Processes, 2018, 31(1):72-76.
[16] SEMAK V, MATSUNAWA A. The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D:Applied Physics, 1997, 30(18):2541-2544.
[17] 胡雪.激光填粉焊接熔池流动数值模拟[D].哈尔滨:哈尔滨工业大学, 2016. HU X. Numerical simulation of weld pool flow in laser welding with powder feed[D]. Harbin:Harbin Institute of Technology, 2016.
[18] LIU C C, HE J S. Numerical analysis of fluid transport pheno-mena and spiking defect formation during vacuum electron beam welding of 2219 aluminum alloy plate[J]. Vacuum, 2016, 132(6):73-78.
[19] 叶飞. 非稳态涡流运动及其产生机理[D]. 天津:天津大学, 2010. YE F. Unsteady vortex motion and formation mechanism[D]. Tianjin:Tianjin University, 2010.
[20] 武传松,孟祥萌,陈姬,等. 熔焊热过程与熔池行为数值模拟的研究进展[J]. 机械工程学报, 2018, 54(2):1-11. WU C S, MENG X M, CHEN J,et al. Progress in numerical simu-lation of thermal processes and weld pool behaviors in fusion welding[J]. Journal of Mechanical Engineering, 2018, 54(2):1-11.
[1] 郑志腾, 有移亮, 刘新灵, 张峥, 路浩天. TC21钛合金电子束焊接件疲劳断口定量反推研究[J]. 材料工程, 2013, 0(11): 50-56.
[2] 刘昆鹏, 赵子华, 张峥. 321不锈钢疲劳早期损伤的涡流评估[J]. 材料工程, 2012, 0(11): 61-65.
[3] 张小帆, 邢丽, 杨成刚, 柯黎明. 未焊透缺陷深度对LY12铝合金搅拌摩擦焊焊缝电导率的影响[J]. 材料工程, 2010, 0(2): 13-16.
[4] 李清华, 胡树兵, 李行志, 肖建中, 王亚军, 刘昕, 籍龙波. TC4钛合金焊接接头组织不均匀性与疲劳性能[J]. 材料工程, 2010, 0(1): 62-68.
[5] 袁鸿, 余槐, 王金雪, 王新南, 朱知寿, 李晓红. TC4-DT钛合金电子束焊接接头的损伤容限性能[J]. 材料工程, 2007, 0(8): 17-19.
[6] 吴会强, 冯吉才, 何景山, 周利. 电子束焊接TiAl基合金接头组织结构及其裂纹产生的敏感性[J]. 材料工程, 2005, 0(4): 7-10.
[7] 张海泉, 赵海燕, 张彦华, 李刘合, 张行安. 镍基高温合金电子束焊接热影响区微裂纹特征分析[J]. 材料工程, 2005, 0(3): 22-25,64.
[8] 郭绍庆, 袁鸿, 谷卫华, 李艳, 崔岩, 李晓红. ZL101A/SiCP/20p电子束焊接工艺研究[J]. 材料工程, 2004, 0(12): 16-20,24.
[9] 孙建武. 检测面对变形铝合金电导率涡流测试值的影响[J]. 材料工程, 1993, 0(7): 30-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn