Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 127-134    DOI: 10.11868/j.issn.1001-4381.2018.000591
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
亚铁盐制备高结晶度MIL-100(Fe)纳米材料及其光降解有机染料性能
刘湘粤1, 张宇1, 王晨1, 毛会玲1, 杜嬛2, 程琥1, 庄金亮1
1. 贵州师范大学 化学与材料科学学院 贵州省功能材料化学重点 实验室, 贵阳 550001;
2. 中国科学院过程工程研究所 中国 科学院绿色过程与工程重点实验室, 北京 100190
Highly Crystalline MIL-100 (Fe) Nanoparticles Prepared from Ferrous Salts and Applications in Photodegradation of Organic Dyes
LIU Xiang-yue1, ZHANG Yu1, WANG Chen1, MAO Hui-ling1, DU Xuan2, CHENG Hu1, ZHUANG Jin-liang1
1. Key Laboratory of Functional Materials Chemistry of Guizhou Province, School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China;
2. Key Laboratory of Green Process and Engineering, CAS, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(3143 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了高效、低成本合成光催化性能优异MOFs纳米颗粒,首先将均苯三甲酸与氢氧化钠反应制备均苯三甲酸三钠盐水溶液,之后与亚铁盐(氯化亚铁和醋酸亚铁)水溶液在室温下搅拌24h,合成高结晶度和高稳定性的MIL-100(Fe)纳米颗粒。采用X射线衍射仪、扫描电子显微镜、紫外-可见漫反射光谱仪、紫外-可见分光光度计等对MIL-100(Fe)纳米颗粒的晶体结构、形貌、光吸收和光催化性能进行测试表征,结果表明在紫外光照射下,MIL-100(Fe)/H2O2体系具有优异的光催化降解罗丹明B和甲基橙等有机染料性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘湘粤
张宇
王晨
毛会玲
杜嬛
程琥
庄金亮
关键词 金属-有机框架材料光催化有机染料分子降解绿色化学    
Abstract:In order to prepare highly crystalline and stable metal-organic frameworks (MOFs) nanoparticles in a straightforward and low cost method, trimesic acid was depronated by three equivalent NaOH in water, and mixed with ferrous salts (e.g. FeCl2 and Fe(OAc)) solution under vigorous stirring for 24h at room temperature. The morphology and photocatalytic activity of the obtained MIL-100(Fe) nanoparticles were fully characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and UV-Vis spectroscopy. The results demonstrate that the MIL-100(Fe) nanoparticles exhibit excellent photocatalytic performance toward high concentrated Rhodamine B (RhB) and methyl orange (MO) organic dyes in the presence of H2O2 as a co-catalyst under UV light irradiation.
Key wordsmetal-organic framework    photocatalysis    organic dye degradation    green chemistry
收稿日期: 2018-05-21      出版日期: 2018-10-17
中图分类号:  O611.4  
通讯作者: 庄金亮(1983-),男,副教授,博士,主要研究方向为功能性金属-有机框架材料的合成及应用,联系地址:贵州省贵阳市云岩区宝山北路116号贵州师范大学化学与材料科学学院(550001),E-mail:jlzhuang@xmu.edu.cn     E-mail: jlzhuang@xmu.edu.cn
引用本文:   
刘湘粤, 张宇, 王晨, 毛会玲, 杜嬛, 程琥, 庄金亮. 亚铁盐制备高结晶度MIL-100(Fe)纳米材料及其光降解有机染料性能[J]. 材料工程, 2018, 46(10): 127-134.
LIU Xiang-yue, ZHANG Yu, WANG Chen, MAO Hui-ling, DU Xuan, CHENG Hu, ZHUANG Jin-liang. Highly Crystalline MIL-100 (Fe) Nanoparticles Prepared from Ferrous Salts and Applications in Photodegradation of Organic Dyes. Journal of Materials Engineering, 2018, 46(10): 127-134.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000591      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/127
[1] PRIER C K, RANKIC D A, MACMILLAN D W. Visible light photoredox catalysis with transition metal complexes:applications in organic synthesis[J]. Chemical Reviews, 2013, 113:5322-5363.
[2] EDDAOUDI M, KIM J, ROSI N. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295:469-472.
[3] CZAJA A U, TRUKHAN N, MULLER U. Industrial applications of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38:1284-1293.
[4] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112:869-932.
[5] CAO X, TAN C, SINDORO M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks:preparation and applications in energy storage and conversion[J]. Chemical Society Reviews, 2017, 46:2660-2677.
[6] 沈丽娟,梁若雯,吴棱. MOFs光催化材料的设计和调控[J]. 催化学报,2015, 36(12):2071-2088. SHEN L J, LIANG R W, WU L. Strategies for engineering metal-organic frameworks as efficient photocatalysts[J]. Chinese Journal of Catalysis, 2015, 36(12):2071-2088.
[7] BAREA E, MONTORO C, NAVARRO J A. Toxic gas removal——metal-organic frameworks for the capture and degradation of toxic gases and vapours[J]. Chemical Society Reviews, 2014, 43:5419-5430.
[8] 黄刚,陈玉贞,江海龙. 金属有机骨架材料在催化中的应用[J]. 化学学报,2016,74:113-129. HUANG G, CHEN Y Z, JIANG H L. Metal-organic frameworks for catalysis[J]. Acta Chimica Sinica, 2016, 74:113-129.
[9] 童敏曼,赵旭东,解丽婷,等.金属-有机骨架材料用于废水处理[J]. 化学进展, 2012, 24(9):1646-1655. TONG M M, ZHAO X D, XIE L T, et al. Treatment of waste water using metal-organic frameworks[J]. Progress in Chemistry, 2012, 24(9):1646-1655.
[10] ZHUANG J L, KIND M, GRYTZ C M, et al. Insight into the oriented growth of surface-attached metal-organic frameworks:surface functionality, deposition temperature, and first layer order[J]. Journal of the American Chemical Society, 2015, 137:8237-8243.
[11] WANG C, LIU X, KESER D N, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45:5107-5143.
[12] CANIONI R, ROCH-MARCHAL C, SECHERESSE F, et al. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe)[J]. Journal of Materials Chemistry, 2011, 21:1226-1233.
[13] LAURIER K G, VERMOORTELE F, AMELOOT R, et al. Iron(Ⅲ)-based metal-organic frameworks as visible light photocatalysts[J]. Journal of the American Chemical Society, 2013, 135:14488-14491.
[14] WANG C C, LI J R, LV X L, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy & Environmental Science, 2014, 7:2831-2867.
[15] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130:13850-13851.
[16] ZHANG L, CHEN L, LIU X, et al. Effective removal of azo-dye orange Ⅱ from aqueous solution by zirconium-based chitosan microcomposite adsorbent[J]. RSC Advances, 2015, 5:93840-93849.
[17] DHAKSHINAMOORTHY A, ALVARO M, HORCAJADA P, et al. Comparison of porous iron trimesates basolite F300 and MIL-100(Fe) as heterogeneous catalysts for lewis acid and oxidation reactions:roles of structural defects and stability[J]. ACS Catalysis, 2012, 2:2060-2065.
[18] LIU X, DANG R, DONG W, et al. A sandwich-like heterostructure of TiO2 nanosheets with MIL-100(Fe):a platform for efficient visible-light-driven photocatalysis[J]. Applied Catalysis B:Environmental 2017, 209:506-513.
[19] ZHANG C F, QIU L G, KE F, et al. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye[J]. Journal of Materials Chemistry A, 2013, 1:14329-14334.
[20] WU Z, YUAN X, ZHANG J, et al. Photocatalytic decontamination of waste water containing organic dyes by metal-organic frameworks and their derivatives[J]. Chem Cat Chem 2017, 9:41-64.
[21] SEO Y K, YOON J W, LEE J S, et al. Large scale fluorine-free synthesis of hierarchically porous iron(Ⅲ) trimesate MIL-100(Fe) with a zeolite MTN topology[J]. Microporous and Mesoporous Materials 2012, 157:137-145.
[22] DUAN S, LI J, LIU X, et al. HF-free synthesis of nanoscale metal-organic framework NMIL-100(Fe) as an efficient dye adsorbent[J]. ACS Sustainable Chem Engineering, 2016, 4:3368-3378.
[23] JEREMIAS F, HENNINGER S K, JANIAK C, Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway[J]. Dalton Trans 2016, 45:8637-8644.
[24] WANG D, WANG M, LI Z. Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J]. ACS Catalysis 2015, 5:6852-6857.
[25] LIANG R, JING F, SHEN L, et al. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(Ⅵ) and oxidation of dyes[J]. J Hazard Mater 2015, 287:364-372.
[26] YANG J, NIU X, AN S, et al. Facile synthesis of Bi2MoO6-MIL-100(Fe) metal-organic framework composites with enhanced photocatalytic performance[J]. RSC Advances, 2017, 7:2943-2952.
[27] ZHAO H, QIAN L, LV H, et al. Introduction of a Fe3O4Core enhances the photocatalytic activity of MIL-100(Fe) with tunable shell thickness in the presence of H2O2[J]. Chem Cat Chem 2015, 7:4148-4155.
[1] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[2] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
[3] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[4] 李军, 刘祥萱, 柴云, 刘渊, 张浪浪. MWNTs对MWNTs/Fe2O3光催化性能的影响[J]. 材料工程, 2018, 46(9): 46-52.
[5] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
[6] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[7] 夏永辉, 高强, 王阳毅, 李梦娟. AZO中空纳米纤维的制备及光催化性能[J]. 材料工程, 2018, 46(2): 16-21.
[8] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[9] 周锋, 任向红, 刘建友, 刘嫔. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19.
[10] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
[11] 曲家惠, 陈金垒, 李红, 张文杰. 溶胶-凝胶法制备xLa-3%In-TiO2光催化材料[J]. 材料工程, 2017, 45(8): 14-18.
[12] 黄凤萍, 崔梦丽, 张双, 郭宇煜, 王帅, 李缨. 高硅氧纤维负载纳米Dy/TiO2薄膜的制备及性能[J]. 材料工程, 2017, 45(7): 66-70.
[13] 曲家惠, 都玲, 赵方昕, 杨丽丽, 张文杰. 溶胶-凝胶法制备La2Ti2O7/HZSM-5及其光催化活性[J]. 材料工程, 2017, 45(7): 71-76.
[14] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[15] 曾斌, 陈小华, 汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程, 2017, 45(12): 99-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn