Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 11-18    DOI: 10.11868/j.issn.1001-4381.2018.000610
  增材制造与再制造专栏 本期目录 | 过刊浏览 | 高级检索 |
4D打印及其关键技术
沈自才, 夏彦, 丁义刚, 赵春晴, 杨艳斌
北京卫星环境工程研究所, 北京 100094
4D printing and its key technologies
SHEN Zi-cai, XIA Yan, DING Yi-gang, ZHAO Chun-qing, YANG Yan-bin
Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
全文: PDF(1567 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 4D打印是3D打印结构在形状、性能和功能方面有目的性的演变,具有时间相关性、打印机无关性和可预测性,其智能动态特性使其具有良好的性能和广阔的应用前景。本文在简要回顾4D打印国内外现状的基础上,给出了4D打印的概念和组成要素,进而从打印结构形状变化的维度对4D打印进行了分类,同时对4D打印组成要素中的打印材料、激励机制和数学建模方法等关键技术进行了分析,最后指出4D打印技术的发展方向是将智能材料与3D打印相结合,将复杂结构简单化制造,利用其独特的自组装、自适应和自修复特性,实现在航天、深海、精确医疗等特殊服役环境和领域的自动化、智能化、个性化应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈自才
夏彦
丁义刚
赵春晴
杨艳斌
关键词 4D打印机制关键技术自组装自适应自修复    
Abstract:4D printing can be defined as the evolution of 3D printing structure in terms of shape, performance and function. It has time dependence, printer independence and predictability, and its smart dynamic performance creates promising capabilities and broad potential applications. On the basis of a brief review of the status of 4D printing at home and abroad, the concept and components of 4D printing were given firstly. Then the 4D printing was classified from the dimension of printing structure shape change. Furthermore, the key technologies such as printing materials, incentive mechanism and mathematical modeling method in 4D printing elements were analyzed. Finally, it was pointed out that the development direction of 4D printing technology is to combine intelligent materials with 3D printing, simplify the manufacture of complex structures, and realize the automation, intellectualization and personalization applications in special service environments and fields such as aerospace, deep sea and precise medical treatment by using its unique characteristics of self-assembly, self-adaption and self-repairing.
Key words4D printing    mechanism    key technology    self-assembly    self-adaption    self-repairing
收稿日期: 2018-05-25      出版日期: 2019-11-21
中图分类号:  TB383  
  TB381  
基金资助: 
通讯作者: 沈自才(1980-),男,高级工程师,主要从事航天材料工程及航天器空间环境工程研究,联系地址:北京市5142信箱39分箱(100094),E-mail:zicaishen@163.com     E-mail: zicaishen@163.com
引用本文:   
沈自才, 夏彦, 丁义刚, 赵春晴, 杨艳斌. 4D打印及其关键技术[J]. 材料工程, 2019, 47(11): 11-18.
SHEN Zi-cai, XIA Yan, DING Yi-gang, ZHAO Chun-qing, YANG Yan-bin. 4D printing and its key technologies. Journal of Materials Engineering, 2019, 47(11): 11-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000610      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/11
[1] GE Q, QI H J, DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103(13):131901.
[2] TIBBITS S. 4D printing:multi-material shape change[J]. Architectural Design, 2014,84(1):116-121.
[3] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564):2418-2421.
[4] LABONNOTE N, RØNNQUIST A, MANUM B, et al. Additive construction:state-of-the-art, challenges and opportunities[J]. Automation in Construction, 2016, 72(3):347-366.
[5] 张文毓. 4D打印技术的研究与应用[J]. 船舶物资与市场,2016(3):56-60. ZHANG W Y. Study and applications of 4D printing technology[J]. Marine Equipment/Materials & Marketing, 2016(3):56-60.
[6] ZAREK M, MANSOUR N, SHAPIRA S, et al. 4D printing of shape memory-based personalized endoluminal medical devices[J]. Macromolecular Rapid Communications,2017, 38:1600628.
[7] BODAGHI M, DAMANPACK A, LIAO W. Self-expanding/shrinking structures by 4D printing[J]. Smart Materials and Structures, 2016, 25(10):105034.
[8] KROGSGAARD M, BEHRENS M A, PEDERSEN J S, et al. Self-healing mussel inspired multi-pH-responsive hydrogels[J]. Biomacromolecules, 2013,14(2):297-301.
[9] TRUBY R L, LEWIS J A. Printing soft matter in three dimensions[J]. Nature, 2016,540(7633):371-378.
[10] HU J, MENG H, LI G, et al. A review of stimuli-responsive polymers for smart textile applications[J]. Smart Materials and Structures, 2012,21(5):053001.
[11] MALACHOWSKI K, BREGER J, KWAG H R, et al. Stimuli-responsive theragrippers for chemomechanical controlled release[J]. Angewandte Chemie, 2014, 53(31):8045-8049.
[12] AN J, TEOH J E M, SUNTORNNOND R, et al. Design and 3D printing of scaffolds and tissues[J]. Engineering,2015,1(2):261-268.
[13] GAO B, YANG Q, ZHAO X, et al. 4D bioprinting for biomedical applications[J]. Trends in Biotechnology,2016,34(9):746-756.
[14] KHOSHNEVIS B. Automated construction by contour crafting-related robotics and information technologies[J]. Automation in Construction, 2004, 13(1):5-19.
[15] 汪新刚,邵兆申. 4D打印技术在卫星有效载荷中的应用展望[J]. 空间电子技术,2016,13(3):96-100. WANG X G, SHAO Z S. 4D printing technology applying prospect in payload on satellites[J]. Space Electronic Technology,2016, 13(3):96-100.
[16] 魏洪秋,万雪,刘彦菊,等. 4D打印形状记忆聚合物材料的研究现状与应用前景[J]. 中国科学:技术科学,2018, 48(1):2-16. WEI H Q,WAN X, LIU Y J, et al. 4D printing of shape memory polymers:research status and application prospects[J]. SCIENTIA SINICA Technologica,2018, 48(1):2-16.
[17] 中国机械工程学会特种加工分会. 第一届4D打印技术论坛在武汉举行[J]. 电加工与模具,2017(4):33. Special Processing Branch of China Mechanical Engineering Society. The 1st 4D printing technology forum was held in Wuhan[J]. Electrical Machining and Mould,2017(4):33.
[18] 许婧,邢悦,郝思嘉,等. 石墨烯/聚合物基复合材料3D打印成型研究进展[J]. 材料工程, 2018, 46(7):1-11. XU J, XING Y, HAO S J, et al. Research progress in graphene/polymer composites processing using 3D printing technology[J]. Journal of Materials Engineering, 2018, 46(7):1-11.
[19] MOMENI F, MEHDI S M, HASSANI N, et al. A review of 4D printing[J]. Materials & Design,2017, 122:42-79.
[20] TIBBITS S, MCKNELLY C, OLGUIN C, et al. 4D printing and universal transformation[C]//34th Annual Conference of the Association-for-Computer-Aided-Design-in-Architecture(ACADIA). Los Angeles, CA:University of Southern California,2014:539-548.
[21] PEI E. 4D printing:dawn of an emerging technology cycle[J]. Assembly Automation,2014, 34(4) 310-314.
[22] KHOO Z X, TEOH J E M, LIU Y, et al. 3D printing of smart materials:a review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping,2015,10(3):103-122.
[23] GLADMAN A S, MATSUMOTO E A, NUZZO R G, et al. Biomimetic 4D printing[J]. Nature Materials, 2016, 15(4):413-418.
[24] ZHOU Y, HUANG W M, KANG S F, et al. From 3D to 4D printing:approaches and typical applications[J]. Journal of Mechanical Science and Technology, 2015, 29(10):4281-4288.
[25] RAVIV D, ZHAO W, MCKNELLY C, et al. Active printed materials for complex self-evolving deformations[J]. Scientific Reports, 2014,4:7422.
[26] GE Q, SAKHAEI A H, LEE H, et al. Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, 6:31110.
[27] CHU W S, KIM M S, JANG K H, et al. From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory:a review and perspective of paradigm shift[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(2):209-222.
[28] KELBASSA I, WOHLERS T, CAFFREY T. Quo vadis, laser additive manufacturing?[J]. Journal of Laser Applications, 2012, 24(5):050101.
[29] AHN D G. Direct metal additive manufacturing processes and their sustainable applications for green technology:a review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(4):381-395.
[30] JAMAL M, KADAM S S, XIAO R, et al. Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers[J]. Advanced Healthcare Materials, 2013, 2(8):1142-1150.
[31] WU J, YUAN C, DING Z,et al. Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Scientific Reports, 2016, 6:24224.
[32] ZHANG Q, ZHANG K, HU G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique[J]. Scientific Reports, 2016, 6:22431.
[33] KUKSENOK O, BALAZS A C. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers[J]. Materials Horizons,2016,1:53-62.
[34] BAKARICH S E, GORKIN RⅢ, PANHUIS M in het,et al. 4D printing with mechanically robust, thermally actuating hydrogels[J]. Macromolecular Rapid Communications,2015,36(12):1211-1217.
[35] ROY D, CAMBRE J N, SUMERLIN B S. Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science, 2010, 35(1/2):278-301.
[36] STUART M A, HUCK W T, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010,9(2):101-113.
[37] ZHOU J, SHEIKO S S. Reversible shape-shifting in polymeric materials[J].Journal of Polymer Science:Part B,2016, 54(14):1365-1380.
[38] SUN L, HUANG W M, DING Z, et al. Stimulus responsive shape memory materials:a review[J]. Materials & Design,2012, 33:577-640.
[39] MENG H, LI G. A review of stimuli-responsive shape memory polymer composites[J]. Polymer,2013,54(9):2199-2221.
[40] YU K, DUNN M L, QI H J. Digital manufacture of shape changing components[J]. Extreme Mechanics Letters,2015,4:9-17.
[41] VILLAR G, GRAHAM A D, BAYLEY H. A tissue-like printed material[J]. Science, 2013, 340(6128):48-52.
[42] GE Q, DUNN C K, QI H J,et al. Active origami by 4D printing[J]. Smart Materials and Structures,2014, 23(9):094007.
[43] KOKKINIS D, SCHAFFNER M, STUDART A R. Multimaterial magnetically assisted 3D printing of composite materials[J]. Nature Communications, 2015,6:8643.
[44] MUTLU R, ALICI G, PANHUIS M in het, et al. Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger[C]//2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Busan, Korea:Institute of Electrical and Electronics Engineers,2015:790-795.
[45] WEI H Q, ZHANG Q W, YAO Y T, et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite[J]. ACS Applied Materials & Interfaces, 2017, 9(1):876-883.
[46] RODRIGUEZ J N, ZHU C, DUOSS E B, et al. Shape-morphing composites with designed micro-architectures[J]. Scientific Reports, 2016, 6:27933.
[47] VAEZI M, CHIANRABUTRA S, MELLOR B, et al. Multiple material additive manufacturing-part 1:a review[J]. Virtual and Physical Prototyping,2013, 8(1):19-50.
[48] HILLER J, LIPSON H. Design and analysis of digital materials for physical 3D voxel printing[J]. Rapid Prototyping Journal, 2009, 15(2):137-149.
[49] HILLER J, LIPSON H. Tunable digital material properties for 3D voxel printers[J]. Rapid Prototyping Journal, 2010, 16(4):241-247.
[50] POPESCU G A, MAHALE T, GERSHENFELD N. Digital materials for digital printing[C]//NIP &Digital Fabrication Conference 2006. Salt Lake, USA:Society for Imaging Science and Technology, 2006:58-61.
[51] NADGORNY M, XIAO Z, CHEN C, et al. Three-dimensional printing of pH responsive and functional polymers on an affordable desktop printer[J]. ACS Applied Materials & Interfaces, 2016, 8(42):28946-28954.
[52] CAMPBELL T A,TIBBITS S, GARRETT B. The programmable world[J]. Scientific American, 2014,311(5):60-65.
[53] TAYLOR D L. Self-healing hydrogels[J]. Advanced Materials, 2016, 28(41):9060-9093.
[1] 邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48(9): 59-68.
[2] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[3] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[4] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[5] 孟凡善, 李征, 丁昊昊, 王文健, 刘启跃. 油酸修饰纳米BN/TiN润滑添加剂的摩擦学性能研究[J]. 材料工程, 2020, 48(5): 160-167.
[6] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[7] 邓培淼, 宁洪龙, 谢伟广, 刘贤哲, 邓宇熹, 姚日晖, 彭俊彪. 氧化亚锡薄膜晶体管的研究进展[J]. 材料工程, 2020, 48(4): 83-88.
[8] 杜娟, 魏子明, 郑世辑, 陈亚军, 胡雪兰, 汪睿. 金属表面制备绿色环保防腐膜技术的研究进展[J]. 材料工程, 2020, 48(2): 22-31.
[9] 高亮, 霍红宇, 周典瑞, 张宝艳, 胡君. 基于动态共价化学树脂及复合材料的研究进展[J]. 材料工程, 2020, 48(11): 68-75.
[10] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[11] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[12] 贾东瑞, 王越, 刘正, 毛萍莉, 王峰, 王志. Y含量对MgZn9YxZr0.5合金热裂敏感性的影响[J]. 材料工程, 2019, 47(7): 126-133.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基呋喃衍生物在有机涂层中的应用[J]. 材料工程, 2019, 47(1): 42-49.
[14] 周德琴, 陈伟, 张秋阳, 周银, 崔向红, 王树奇. 不同基体热浸镀铝镀层组织和高温磨损行为[J]. 材料工程, 2018, 46(2): 93-98.
[15] 李瑞, 刘立英, 姬宇航, 王如志, 杨炎翰, 胡安明, 白石. 激光诱导法制备高质量铌酸钾纳米线及其发光性能[J]. 材料工程, 2018, 46(11): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn