Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 141-147    DOI: 10.11868/j.issn.1001-4381.2018.000622
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
CIP/GF/CF/EP吸波复合材料的制备及力学性能
张雪霏1, 周金堂1,2,3, 姚正军1,2,3, 蔡海硕1, 魏波1
1. 南京航空航天大学 材料科学与技术学院, 南京 211106;
2. 南京航空航天大学 面向苛刻环境的材料制备与防护技术工业和信息化部重点实验室, 南京 211106;
3. 江苏省先进金属材料高技术研究重点实验室, 南京 211189
Preparation and mechanical property of CIP/GF/CF/EP absorbing composites
ZHANG Xue-fei1, ZHOU Jin-tang1,2,3, YAO Zheng-jun1,2,3, CAI Hai-shuo1, WEI Bo1
1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2. Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
3. Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189, China
全文: PDF(2989 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为制备兼具力学性能和电磁吸收性能的结构型吸波材料,采用真空辅助成型工艺设计制备一种以羰基铁粉(CIP)为吸收剂,玻璃纤维(GF)为透波层,碳纤维(CF)为反射层,环氧树脂(EP)为基体的吸波复合材料。研究了不同质量比CIP/EP对吸波复合材料力学性能和微波吸收性能的影响。通过FTIR和DSC分析可知CIP未与EP发生化学反应。SEM结果表明CIP能够在EP树脂基体中均匀分散,不趋向于纤维表面。力学测试分析结果显示:当CIP/EP质量比达到30%时,CIP/GF/CF/EP复合材料的力学性能最佳,拉伸强度为347.56MPa,拉伸模量为25.99GPa,较纯GF/CF/EP复合材料提升了4.3%和5.7%;弯曲强度为339.6MPa,弯曲模量为23.7GPa,较纯GF/CF/EP复合材料提升了18.2%和71.2%。矢量网络分析可知复合吸波板的吸波性能随CIP含量的增加而增加,且吸波损耗反射峰值朝低频段移动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雪霏
周金堂
姚正军
蔡海硕
魏波
关键词 结构吸波材料力学性能吸波性能羰基铁粉真空辅助成型    
Abstract:In order to prepare structural absorbing materials with mechanical properties and electromagnetic absorption properties, a kind of absorbing composites with carbonyl iron powders (CIP) as absorbent, glass fiber(GF) as the transmittance layer, carbon fiber(CF) as the reflective layer, and epoxy resin(EP) as matrix was designed and fabricated by vacuum assisted resin infusion process. The effect of different mass ratios of CIP/EP on the mechanical properties and microwave absorption properties of the composites was studied. The results of FTIR and DSC suggest that there is not a chemical reaction between CIP and EP. SEM shows that CIP can be dispersed uniformly in EP resin matrix and not toward the surface of the fibers. The results of mechanical tests indicate that the best mechanical properties of the CIP/GF/CF/EP composites are at a mass ratio of 3:10 of CIP to EP. The tensile strength and tensile modulus are 347.56MPa and 25.99GPa, 4.3% and 5.7% higher than that of GF/CF/EP composites. The flexural strength and the flexural modulus are 339.6MPa and 23.7GPa, 18.2% and 71.2% higher than that of GF/CF/EP composites. Vector network analysis proves that the absorbing performance of composites absorbing plate is increased and the peak of reflection absorbing loss is moved toward the low frequency band with the increase of CIP.
Key wordsstructural absorbing material    mechanical property    microwave absorption property    carbonyl iron powder    vacuum assisted resin infusion
收稿日期: 2018-05-27      出版日期: 2019-10-12
中图分类号:  TB333  
通讯作者: 周金堂(1984-),副教授,博士,研究方向为结构功能一体化复合材料,联系地址:江苏省南京市江宁区南京航空航天大学材料与技术学院(211106),E-mail:imzjt@nuaa.edu.cn     E-mail: imzjt@nuaa.edu.cn
引用本文:   
张雪霏, 周金堂, 姚正军, 蔡海硕, 魏波. CIP/GF/CF/EP吸波复合材料的制备及力学性能[J]. 材料工程, 2019, 47(10): 141-147.
ZHANG Xue-fei, ZHOU Jin-tang, YAO Zheng-jun, CAI Hai-shuo, WEI Bo. Preparation and mechanical property of CIP/GF/CF/EP absorbing composites. Journal of Materials Engineering, 2019, 47(10): 141-147.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000622      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/141
[1] 赵灵智,胡社军,李伟善,等. 吸波材料的吸波原理及其研究进展[J]. 现代防御技术, 2007, 35(1):27-31. ZHAO L Z, HU S J, LI W S, et al. Absorbing mechanism and progress of wave-absorbing materials[J]. Modern Defence Technology, 2007, 35(1):27-31.
[2] 范夕萍,窦建芝,李静,等. 国外军用新型吸波材料专利技术研究进展[J]. 功能材料, 2012, 43(增刊2):165-167. FAN X P, DOU J Z, LI J, et al. Research progress of military novel absorbing materials patent technology abroad[J]. Journal of Functional Materials, 2012, 43(Suppl 2):165-167.
[3] WANG H, WU L, JIAO J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. Journal of Materials Chemistry A, 2015, 3(12):6517-6525.
[4] YU L, LAN X, WEI C, et al. MWCNT/NiO-Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2018, 748:111-116.
[5] 黎炎图,黄小忠,杜作娟,等. 结构吸波纤维及其复合材料的研究进展[J]. 材料导报, 2010, 24(4):76-79. LI Y T, HUANG X Z, DU Z J, et al. Research progress of structural radar absorbing fiber and composite materials[J]. Materials Review, 2010, 24(4):76-79.
[6] 郭宇,贾晓敏,张塬昆,等. 雷达吸波聚合物基体材料研究概况[J]. 工程塑料应用, 2016, 44(8):133-137. GUO Y, JIA X M, ZHANG Y K, et al. Research situation of radar wave-absorbing polymer matrix material[J]. Engineering Plastics Application, 2016, 44(8):133-137.
[7] WU J M, CHEN J, ZHAO Y Y, et al. Effect of electrophoretic condition on the electromagnetic interference shielding perform-ance of reduced graphene oxide-carbon fiber/epoxy resin compo-sites[J]. Composites Part B:Engineering, 2016, 105:167-175.
[8] 礼嵩明,蒋诗才,望咏林,等. "超材料"结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11):10-14. LI C M, JIANG S C, WANG Y L, et al. Study on "Metamat-erial" structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45(11):10-14.
[9] 李俊燕,陈平. 结构型吸波复合材料的研究进展[J]. 纤维复合材料, 2012(2):11-14. LI J Y, CHEN P. Development in sructural absorbing composites[J]. Fiber Composites, 2012(2):11-14.
[10] LIANG C, WANG Z, WU L, et al. Light and strong hierar-chical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures[J]. ACS Applied Materials & Interfaces,2017,9(35):29950-29957.
[11] CHOI I, LEE D, LEE D G. Radar absorbing composite stru-ctures dispersed with nano-conductive particles[J]. Composite Structures, 2015, 122:23-30.
[12] SHAH A, WANG Y, HUANG H, et al. Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates[J]. Composite Structures, 2015, 131:1132-1141.
[13] LIANG C, WANG Z. Controllable fabricating dielectric-dielec-tric SiC@C core-shell nanowires for high-performance electrom-agnetic wave attenuation[J].ACS Applied Materials & Inter-faces, 2017, 9(46):40690-40696.
[14] 望红玉. 聚酰亚胺树脂基吸波复合材料的制备及性能研究[D]. 西安:西北工业大学, 2016. WANG H Y. Research on preparation process and microwave absorbing properties of polyimide composite[D]. Xi'an:North-western Polytechnical University, 2016.
[15] GAO Y, GAO X, LI J, et al. Microwave absorbing and mecha-nical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites[J]. Journal of Applied Polymer Science, 2018, 135:45846.
[16] 严文聪,曾金芳,王斌. 纤维混杂复合材料研究进展[J]. 化工新型材料, 2011, 39(6):30-33. YAN W C, ZENG J F, WANG B. The progress in fibers hybrid composites[J]. New Chemical Materials, 2011, 39(6):30-33.
[17] XIA C, SHI S Q, CAI L. Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites[J].Composites Part B:Engineering, 2015, 78:138-143.
[18] 吕程. 增强环氧树脂改性及机理的红外光谱研究[D]. 重庆:重庆大学, 2008. LU C. Study on the enhanced modification of epoxy infrared spectrum by used[D].Chongqing:Chongqing University,2008.
[19] SUN Y Y, ZHANG Z Q, MOON K S, et al. Glass transition and relaxation behavior of epoxy nanocomposites[J]. Journal of Polymer Science Part B Polymer Physics, 2004, 42(21):3849-3858.
[20] 张代军,刘刚,张晖,等. 纳米粒子改性环氧树脂固化反应动力学研究[J]. 热固性树脂, 2010, 25(2):5-10. ZHANG D J, LIU G, ZHANG H, et al. Curing kinetics research of nano-particles modified epoxy resin[J].Thermoset-ting Resin, 2010, 25(2):5-10.
[21] SURESHA B, SAINI M S. Influence of organo-modified mont-morillonite nanolayers on static mechanical and dynamic mechanical behavior of carbon/epoxy composites[J]. Journal of Composite Materials, 2016, 50(25):3589-3601.
[22] ZENG Y, LIU H, MAI Y, et al. Improving interlaminar frac-ture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles[J]. Composites Part B:Engineering, 2012, 43(1):90-94.
[23] 郑国栋,张清杰,邓火英,等. 不同官能化碳纳米管对MWCNTs-碳纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2015, 32(3):640-648. ZHENG G D, ZHANG Q J, DENG H Y, et al. Effect of different functionalized carbon nanotubes on mechanical properties of MWCNTs-carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3):640-648.
[24] NAYAK R K, MAHATO K K, RAY B C. Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites[J]. Compo-sites Part A:Applied Science & Manufacturing, 2016, 90:736-747.
[25] LI W, DICHIARA A, ZHA J, et al. On improvement of mech-anical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT-Al2O3 hybrids[J]. Compo-sites Science and Technology, 2014, 103:36-43.
[26] LIU P J, NG V M H, YAO Z J, et al. Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties[J]. ACS Applied Materials & Interfaces, 2017, 9(19):16404-16416.
[27] BERTHAULT A, ROUSSELLE D, ZERAH G. Magnetic properties of permalloy microparticles[J]. Journal of Magnetism & Magnetic Materials, 1991, 112(1/3):477-480.
[28] 周远良,赛义德,张黎,等. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3):41-47. ZHOU Y L, SAI Y D, ZHANG L, et al. Preparation and performance of resin-based Fe nanoparticles/carbon fibers microwave absorbing composite plates[J]. Journal of Materials Engineering, 2018, 46(3):41-47.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[14] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[15] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn