Preparation and mechanical property of CIP/GF/CF/EP absorbing composites
Xue-fei ZHANG1, Jin-tang ZHOU1,2,3,*(), Zheng-jun YAO1,2,3, Hai-shuo CAI1, Bo WEI1
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2 Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 3 Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189, China
In order to prepare structural absorbing materials with mechanical properties and electromagnetic absorption properties, a kind of absorbing composites with carbonyl iron powders (CIP) as absorbent, glass fiber(GF) as the transmittance layer, carbon fiber(CF) as the reflective layer, and epoxy resin(EP) as matrix was designed and fabricated by vacuum assisted resin infusion process. The effect of different mass ratios of CIP/EP on the mechanical properties and microwave absorption properties of the composites was studied. The results of FTIR and DSC suggest that there is not a chemical reaction between CIP and EP. SEM shows that CIP can be dispersed uniformly in EP resin matrix and not toward the surface of the fibers. The results of mechanical tests indicate that the best mechanical properties of the CIP/GF/CF/EP composites are at a mass ratio of 3:10 of CIP to EP. The tensile strength and tensile modulus are 347.56MPa and 25.99GPa, 4.3% and 5.7% higher than that of GF/CF/EP composites. The flexural strength and the flexural modulus are 339.6MPa and 23.7GPa, 18.2% and 71.2% higher than that of GF/CF/EP composites. Vector network analysis proves that the absorbing performance of composites absorbing plate is increased and the peak of reflection absorbing loss is moved toward the low frequency band with the increase of CIP.
ZHAO L Z , HU S J , LI W S , et al. Absorbing mechanism and progress of wave-absorbing materials[J]. Modern Defence Technology, 2007, 35 (1): 27- 31.
doi: 10.3969/j.issn.1009-086X.2007.01.007
FAN X P , DOU J Z , LI J , et al. Research progress of military novel absorbing materials patent technology abroad[J]. Journal of Functional Materials, 2012, 43 (Suppl 2): 165- 167.
3
WANG H , WU L , JIAO J , et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. Journal of Materials Chemistry A, 2015, 3 (12): 6517- 6525.
doi: 10.1039/C5TA00303B
4
YU L , LAN X , WEI C , et al. MWCNT/NiO-Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2018, 748, 111- 116.
doi: 10.1016/j.jallcom.2018.03.147
LI Y T , HUANG X Z , DU Z J , et al. Research progress of structural radar absorbing fiber and composite materials[J]. Materials Review, 2010, 24 (4): 76- 79.
GUO Y , JIA X M , ZHANG Y K , et al. Research situation of radar wave-absorbing polymer matrix material[J]. Engineering Plastics Application, 2016, 44 (8): 133- 137.
doi: 10.3969/j.issn.1001-3539.2016.08.029
7
WU J M , CHEN J , ZHAO Y Y , et al. Effect of electrophoretic condition on the electromagnetic interference shielding perform-ance of reduced graphene oxide-carbon fiber/epoxy resin compo-sites[J]. Composites Part B:Engineering, 2016, 105, 167- 175.
doi: 10.1016/j.compositesb.2016.08.042
LI C M , JIANG S C , WANG Y L , et al. Study on "Metamat-erial" structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45 (11): 10- 14.
doi: 10.11868/j.issn.1001-4381.2016.000152
LI J Y , CHEN P . Development in sructural absorbing composites[J]. Fiber Composites, 2012, (2): 11- 14.
doi: 10.3969/j.issn.1003-6423.2012.02.004
10
LIANG C , WANG Z , WU L , et al. Light and strong hierar-chical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures[J]. ACS Applied Materials & Interfaces, 2017, 9 (35): 29950- 29957.
11
CHOI I , LEE D , LEE D G . Radar absorbing composite stru-ctures dispersed with nano-conductive particles[J]. Composite Structures, 2015, 122, 23- 30.
12
SHAH A , WANG Y , HUANG H , et al. Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates[J]. Composite Structures, 2015, 131, 1132- 1141.
doi: 10.1016/j.compstruct.2015.05.054
13
LIANG C , WANG Z . Controllable fabricating dielectric-dielec-tric SiC@C core-shell nanowires for high-performance electrom-agnetic wave attenuation[J]. ACS Applied Materials & Inter-faces, 2017, 9 (46): 40690- 40696.
14
望红玉.聚酰亚胺树脂基吸波复合材料的制备及性能研究[D].西安: 西北工业大学, 2016.
14
WANG H Y. Research on preparation process and microwave absorbing properties of polyimide composite[D]. Xi'an: North-western Polytechnical University, 2016.
15
GAO Y , GAO X , LI J , et al. Microwave absorbing and mecha-nical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites[J]. Journal of Applied Polymer Science, 2018, 135, 45846.
doi: 10.1002/app.45846
YAN W C , ZENG J F , WANG B . The progress in fibers hybrid composites[J]. New Chemical Materials, 2011, 39 (6): 30- 33.
doi: 10.3969/j.issn.1006-3536.2011.06.009
17
XIA C , SHI S Q , CAI L . Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites[J]. Composites Part B:Engineering, 2015, 78, 138- 143.
doi: 10.1016/j.compositesb.2015.03.039
18
吕程.增强环氧树脂改性及机理的红外光谱研究[D].重庆: 重庆大学, 2008.
18
LU C. Study on the enhanced modification of epoxy infrared spectrum by used[D].Chongqing: Chongqing University, 2008.
19
SUN Y Y , ZHANG Z Q , MOON K S , et al. Glass transition and relaxation behavior of epoxy nanocomposites[J]. Journal of Polymer Science Part B Polymer Physics, 2004, 42 (21): 3849- 3858.
doi: 10.1002/polb.20251
ZHANG D J , LIU G , ZHANG H , et al. Curing kinetics research of nano-particles modified epoxy resin[J]. Thermoset-ting Resin, 2010, 25 (2): 5- 10.
doi: 10.3969/j.issn.1002-7432.2010.02.002
21
SURESHA B , SAINI M S . Influence of organo-modified mont-morillonite nanolayers on static mechanical and dynamic mechanical behavior of carbon/epoxy composites[J]. Journal of Composite Materials, 2016, 50 (25): 3589- 3601.
doi: 10.1177/0021998315622984
22
ZENG Y , LIU H , MAI Y , et al. Improving interlaminar frac-ture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles[J]. Composites Part B:Engineering, 2012, 43 (1): 90- 94.
doi: 10.1016/j.compositesb.2011.04.036
ZHENG G D , ZHANG Q J , DENG H Y , et al. Effect of different functionalized carbon nanotubes on mechanical properties of MWCNTs-carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015, 32 (3): 640- 648.
24
NAYAK R K , MAHATO K K , RAY B C . Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites[J]. Compo-sites Part A:Applied Science & Manufacturing, 2016, 90, 736- 747.
25
LI W , DICHIARA A , ZHA J , et al. On improvement of mech-anical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT-Al2O3 hybrids[J]. Compo-sites Science and Technology, 2014, 103, 36- 43.
doi: 10.1016/j.compscitech.2014.08.016
26
LIU P J , NG V M H , YAO Z J , et al. Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties[J]. ACS Applied Materials & Interfaces, 2017, 9 (19): 16404- 16416.
27
BERTHAULT A , ROUSSELLE D , ZERAH G . Magnetic properties of permalloy microparticles[J]. Journal of Magnetism & Magnetic Materials, 1991, 112 (1/3): 477- 480.
ZHOU Y L , SAI Y D , ZHANG L , et al. Preparation and performance of resin-based Fe nanoparticles/carbon fibers microwave absorbing composite plates[J]. Journal of Materials Engineering, 2018, 46 (3): 41- 47.