Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 143-150    DOI: 10.11868/j.issn.1001-4381.2018.000667
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
混杂光固化3D打印树脂固化动力学性能
林广鸿, 尹敬峰, 黄鸿, 黄伟滨, 蔡慕华, 向洪平, 刘晓暄
广东工业大学 材料与能源学院, 广州 510006
Photocuring kinetics properties of hybrid UV-curing resin for 3D printing
LIN Guang-hong, YIN Jing-feng, HUANG Hong, HUANG Wei-bin, CAI Mu-hua, XIANG Hong-ping, LIU Xiao-xuan
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
全文: PDF(3914 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以环氧树脂(EPON828)和聚氨酯丙烯酸酯(RJ429)为基础树脂,采用自由基-阳离子混杂光固化体系来制备可用于3D打印的混杂光固化树脂,研究固化过程中自由基和阳离子光引发剂的种类、质量配比和加入量对光固化树脂固化动力学及其力学性能与成型精度的影响。结果表明:阳离子光引发剂Gencure 842和自由基光引发剂Doracur 1173为最佳复配引发剂,最佳质量比为0.75∶1,最优加入量为6.0%(质量分数);环氧树脂828和聚氨酯丙烯酸酯429的最佳质量比为1∶1,混杂光固化树脂的黏度为50.5Pa·s;光固化制品的拉伸强度和冲击强度分别为6.60MPa和8.28kJ·m-2,体积收缩率和翘曲度分别为-3.986%和3.62%,满足3D打印光敏树脂的成型要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林广鸿
尹敬峰
黄鸿
黄伟滨
蔡慕华
向洪平
刘晓暄
关键词 光固化3D打印环氧树脂聚氨酯丙烯酸酯自由基-阳离子混杂光固化体积收缩    
Abstract:Free radical-cationic hybrid UV-curable resin applied to UV-cured 3D printing was developed with epoxy resin (EPON828) and polyurethane acrylate (RJ429) as photosensitive prepolymers. The influences of types, ratios and dosages of free radical and cationic photoinitiators on photocuring kinetics, mechanical properties and prototyping precision of hybrid UV-curing resin were investigated. The results show that cationic photoinitiator Gencure 842 and free radical photoinitiator Doracur 1173 are the most appropriate hybrid photoinitiators, with an optimum mass ratio of 0.75:1 and mass fraction of 6%. The optimum mass ratio of EPON828 and RJ429 is determined as 1:1, and the viscosity of the developed resin is 50.5Pa·s. The tensile strength, impact strength, volume shrinkage and warpage of UV-cured resin items are 6.60MPa, 8.28kJ·m-2,-3.986% and 3.62%, respectively. The hybrid UV-curing resin can basically satisfy the requirements of UV-cured 3D printing.
Key wordsUV-cured 3D printing    epoxy resin    polyurethane acrylate    free radical-cationic hybrid UV-curing    volume shrinkage
收稿日期: 2018-05-31      出版日期: 2019-12-17
中图分类号:  O631.3+4  
基金资助: 
通讯作者: 向洪平(1986-),男,副教授,博士,主要从事高分子光化学及光固化技术应用,联系地址:广东省广州市广东工业大学材料与能源学院(510006),E-mail:xianghongping@gdut.edu.cn     E-mail: xianghongping@gdut.edu.cn
引用本文:   
林广鸿, 尹敬峰, 黄鸿, 黄伟滨, 蔡慕华, 向洪平, 刘晓暄. 混杂光固化3D打印树脂固化动力学性能[J]. 材料工程, 2019, 47(12): 143-150.
LIN Guang-hong, YIN Jing-feng, HUANG Hong, HUANG Wei-bin, CAI Mu-hua, XIANG Hong-ping, LIU Xiao-xuan. Photocuring kinetics properties of hybrid UV-curing resin for 3D printing. Journal of Materials Engineering, 2019, 47(12): 143-150.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000667      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/143
[1] LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Reviews, 2017, 117(15):10212-10290.
[2] 刘刚,张代军,张晖,等. 纳米粒子改性环氧树脂及其复合材料力学性能研究[J]. 材料工程, 2010(1):47-53. LIU G, ZHANG D J, ZHANG H, et al. Mechanical properties of nanoparticles modified epoxy matrix and composites[J]. Journal of Materials Engineering, 2010(1):47-53.
[3] MELCHELS F P W, DOMINGOS M A N, KLEIN T J, et al. Additive manufacturing of tissues and organs[J]. Progress in Polymer Science, 2012, 37(8):1079-1104.
[4] DECKER C. UV-radiation curing chemistry[J]. Pigment & Resin Technology, 2013, 30(5):278-286.
[5] 侯桂香,谢建强,李婷婷,等. MAP-POSS/不饱和环氧树脂混杂光固化膜制备与性能[J]. 材料工程, 2017, 45(8):49-54. HOU G X, XIE J Q, LI T T, et al. Preparation and properties of MAP-POSS/unsaturated epoxy resin hybrid ultraviolet light cured film[J]. Journal of Materials Engineering, 2017, 45(8):49-54.
[6] 郭长龙,黄蓓青,魏先福,等. 适于3D打印的混杂光固化体系的研究[J]. 北京印刷学院学报, 2014, 22(6):79-82. GUO C L, HUANG B Q, WEI X F, et al. A study on hybrid 3D printing UV-curing materials[J]. Journal of Beijing Institute of Graphic Communication, 2014, 22(6):79-82.
[7] HUANG B W, DU Z P, YONG T, et al. Preparation of a novel hybrid type photosensitive resin for stereo lithography in 3D printing and testing on the accuracy of the fabricated parts[J]. Journal of Wuhan University of Technology,2017,32(3):726-732.
[8] KAHRAMAN M V, KAYAMAN A N, ARSU N, et al. Flame retardance of epoxy acrylate resin modified with phosphorus containing compounds[J]. Progress in Organic Coatings, 2004, 51(3):213-219.
[9] 李吉泉,李德群,郭志英. 塑件翘曲度及其计算方法[J]. 高分子材料科学与工程, 2008, 24(6):1-4. LI J Q, LI D Q, GUO Z Y. The warpage degree of injection-molded parts and evaluation methods[J]. Polymeric Materials Science and Engineering, 2008, 24(6):1-4.
[10] NERGIS A, DAVIDSON R S, HOLMAN R. Factors affecting the photoyellowing which occurs during the photoinitiated polymerization of acrylates[J]. Journal of Photochemistry and Photobiology A, 1995, 87(2):169-175.
[11] 黄岐善. 引发剂"笼蔽效应"的微观动力学解释[J].高等学校化学学报, 1999, 20(5):819-823. HUANG Q S. Microscopic kinetic interpretation for "cage effect" of initiator[J]. Chemical Journal of Chinese Universities, 1999, 20(5):819-823.
[12] PODSIADLY R, PODEMSKA K, SZYMCZAK A M. Novel visible photoinitiators systems for free-radical/cationic hybrid photo polymerization[J].Dyes & Pigments,2011,91(3):422-426.
[13] 王亦农. 自由基-阳离子混杂光固化环氧/丙烯酸酯协同效应的研究[J]. 高分子通报, 2012(7):111-115. WANG Y N. Study on synergy effect of free radical-cationic hybrid light curing composite resin of epoxy-acrylate[J]. Chinese Polymer Bulletin, 2012(7):111-115.
[14] JO W K, TAYADE R J. Facile photocatalytic reactor development using nano-TiO2 immobilized mosquito net and energy efficient UV-LED for industrial dyes effluent treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):319-327.
[15] WEISS K D. Paint and coatings:a mature industry in transition[J]. Progress in Polymer Science, 1997, 22(2):203-245.
[16] 魏善智,宋彩雨,孙明明,等. 紫外光固化收缩率的研究进展[J]. 化学与粘合, 2016, 38(5):373-377. WEI S Z, SONG C Y, SUN M M, et al. The research progress in shrinkage of UV-curing[J]. Chemistry and Adhesion, 2016, 38(5):373-377.
[17] HE Y, XIAO M, WU F, et al. Photopolymerization kinetics of cycloaliphatic epoxide-acrylate hybrid monomer[J]. Polymer International, 2007, 56(10):1292-1297.
[18] MOHTADIZADEH F, ZOHURIAAN-MEHR M J, HADAVAND B S. Tetra-functional epoxy-acrylate as crosslinker for UV curable resins:synthesis, spectral, and thermo-mechanical studies[J]. Progress in Organic Coatings, 2015, (89):231-239.
[19] BANDYOPADHYAY A, ODEGARD G M. Molecular modelling of physical aging in epoxy polymers[J]. Journal of Applied Polymer Science, 2013, 128(1):660-666.
[20] JENSEN M, JAKOBSEN J. Effect of cure cycle on enthalpy relaxation and post shrinkage in neat epoxy and epoxy composites[J]. Journal of Non-Crystalline Solids, 2016, 452:109-113.
[1] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[2] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[3] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[4] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[5] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[6] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[7] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[8] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[9] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[10] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[11] 张博文, 唐禹尧, 崔玉青, 魏玮, 李小杰, 罗静, 刘晓亚. 六咪唑环三磷腈的合成及其作为环氧树脂固化促进剂的性能[J]. 材料工程, 2019, 47(1): 91-96.
[12] 乔栩, 林治, 林晓丹. 石墨烯的制备及其对环氧树脂导电性能的影响[J]. 材料工程, 2018, 46(7): 53-60.
[13] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[14] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[15] 郭妙才, 洪旭辉, 李亚锋. 非均相固化体系对复合材料树脂微观力学均匀性的影响[J]. 材料工程, 2018, 46(10): 142-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn