Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 108-115    DOI: 10.11868/j.issn.1001-4381.2018.000682
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性
李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾
河北大学 电子信息工程学院, 河北 保定 071002
Preparation and electrochemical characteristics of nanoscale Li2MnSiO4 cathode material by high pressure hydrothermal method
LI Jia-jun, LIU Lei, LU Yu-xiao, SUN Zhi-jian, MA Lei
College of Electronic Information Engineering, Hebei University, Baoding 071002, Hebei, China
全文: PDF(4755 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用高压水热法制备锂离子电池正极材料Li2MnSiO4,研究压强、反应温度和前驱体浓度对合成Li2MnSiO4的影响,并进一步研究碳包覆前后Li2MnSiO4的电化学性能。通过X射线衍射、扫描电镜、透射电镜、充放电测试和交流阻抗等方法对样品的结构、形貌和电化学性能进行表征分析。结果表明:采用水热法在高压高温条件下可以合成高纯度的Li2MnSiO4材料,提高前驱体浓度有助于形成粒径较小的Li2MnSiO4纳米颗粒。电化学性能测试显示碳包覆后的Li2MnSiO4/C比Li2MnSiO4具有更高的比容量,在0.1C(电流密度为33.3mA·g-1)下首次放电比容量可达178.6mAh·g-1,循环50次后放电比容量为97.1mAh·g-1,容量保持率为54.4%。同时,Li2MnSiO4/C还具有比Li2MnSiO4更小的电荷转移阻抗和更高的锂离子扩散系数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李嘉俊
刘磊
卢玉晓
孙之剑
马蕾
关键词 锂离子电池正极材料Li2MnSiO4高压水热法复合    
Abstract:Li2MnSiO4 cathode material for lithium ion batteries was successfully synthesized using a high pressure hydrothermal method.The influences of pressure, reaction temperature and precursor concentration on the preparation of Li2MnSiO4 were carefully studied. The structure, morphology and electrochemical properties of the samples were characterized and analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electrochemical test. The results show that well crystallized Li2MnSiO4 with high-purity material can be synthesized at high pressure. Moreover, higher precursor concentration is conducive to the formation of nanoscale particles of Li2MnSiO4. Electrochemical performance tests show that carbon-coated Li2MnSiO4/C composite has higher specific capacity than that of Li2MnSiO4.An initial specific discharge capacity of 178.6mAh·g-1 can be achieved for the Li2MnSiO4/C cathode material at 0.1C (the current density is 33.3mA·g-1) and a capacity retention of 97.1mAh·g-1 after 50 cycles is 54.4%. At the same time, Li2MnSiO4/C also shows smaller charge transfer resistance and higher lithium ion diffusion coefficient than that of Li2MnSiO4.
Key wordslithium-ion battery    cathode material    Li2MnSiO4    high pressure hydrothermal method    com-posite
收稿日期: 2018-06-06      出版日期: 2019-09-18
中图分类号:  O646  
基金资助: 
通讯作者: 刘磊(1979-),男,副教授,博士,主要研究方向为锂离子电池,联系地址:河北省保定市莲池区河北大学电子信息工程学院(071002),E-mail:leiliu@hbu.edu.cn     E-mail: leiliu@hbu.edu.cn
引用本文:   
李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
LI Jia-jun, LIU Lei, LU Yu-xiao, SUN Zhi-jian, MA Lei. Preparation and electrochemical characteristics of nanoscale Li2MnSiO4 cathode material by high pressure hydrothermal method. Journal of Materials Engineering, 2019, 47(9): 108-115.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000682      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/108
[1] NYTEN A, ABOUIMRANE A, ARMAND M, et al. Electro-chemical performance of Li2FeSiO4 as a new Li-battery cathode material[J]. Electrochem Commun, 2005, 7(2):156-160.
[2] KOKALJ A, DOMINKO R, MALI G, et al. Beyond one-ele-ctron reaction in Li cathode materials:designing Li2MnxFe1-xSiO4[J]. Chem Mat, 2007, 19(15):3633-3640.
[3] DENG C, ZHANG S, FU B L, et al. Characterization of Li2MnSiO4 and Li2eSiO4 cathode materials synthesized via a citric acid assisted sol-gel method[J]. Materials Chemistry and Physics, 2010, 120(1):14-17.
[4] DOMINKO R, BELE M, GABERSCEK M, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as pot-ential Li-battery cathode materials[J]. Electrochem Commun, 2006, 8(2):217-222.
[5] LIU L, WANG P F, LI J J, et al. Hydrothermal preparation and intrinsic transport properties of nanoscale Li2FeSiO4[J]. Solid State Ionics, 2018, 320:353-359.
[6] 胡国荣,曹雁冰,彭忠东,等. 微波合成法制备锂离子电池正极材料Li2FeSiO4[J]. 物理化学学报, 2009, 25(5):1004-1008. HU G R, CAO Y B, PENG Z D, et al. Preparation of Li2FeSiO4 cathode material for lithium-ion batteries by microwave synthesis[J]. Acta Physico-Chimica Sinica, 2009, 25(5):1004-1008.
[7] DOMINKO R, BELE M, KOKALJ A, et al. Li2MnSiO4 as a potential Li-battery cathode material[J]. J Power Sources, 2007, 174(2):457-461.
[8] DOMPABLO A D, ARMAND M, TARSCON J M, et al. On-demand design of polyoxianionic cathode materials based on elect-ronegativity correlations:an exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochem Commun, 2006, 8(8):1292-1298.
[9] 戴丽琴,吴锋,官亦标,等. 石墨烯-Li2MnSiO4复合正极材料的合成与电化学性能研究[J]. 化学学报, 2014, 72(5):583-589. DAI L Q, WU F, GUAN Y B, et al. Synthesis and electroch-emical performance of graphene-Li2MnSiO4 composite[J]. Acta Chim Sin, 2014, 72(5):583-589.
[10] AONO S, TSURUDO T, URITA K, et al. Direct synthesis of novel homogeneous nanocomposites of Li2MnSiO4 and carbon as a potential Li-ion battery cathode material[J]. Chem Commun, 2013, 49(28):2939-2941.
[11] BHASKAR A, DEEPA M, RAO T N, et al. In situ carbon coated Li2MnSiO4/C composites as cathodes for enhanced perfo-rmance Li-ion batteries[J]. J Electrochem Soc, 2012, 159(12):A1954-A1960.
[12] 高伟,包丽颖,苏岳锋,等. Li2MnSiO4/CNTs复合正极材料的合成与电化学性能[J]. 高等学校化学学报, 2013, 34(7):1709-1713. GAO W, BAO L Y, SU Y F, et al. Preparation and electroch-emical performance of Li2MnSiO4/CNTs composite cathode material for lithium ion batteries[J]. Chem J Chin Univ-Chin, 2013, 34(7):1709-1713.
[13] GUMMOW R J, SHARMA N, PETERSON V K, et al. Crystal chemistry of the Pmnb polymorph of Li2MnSiO4[J]. J Solid State Chem, 2012, 188(22):32-37.
[14] KARTHIKEYAN K, ARAVINDAN V, LEE S B, et al. Elec-trochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors[J]. J Power Sources, 2010, 195(11):3761-3764.
[15] LIU J, XU H Y, JIANG X L, et al. Facile solid-state synthesis of Li2MnSiO4/C nanocomposite as a superior cathode with a long cycle life[J]. J Power Sources, 2013, 231(6):39-43.
[16] LIU W G, XU Y H, YANG R. Synthesis, characterization and electrochemical performance of Li2MnSiO4/C cathode material by solid-state reaction[J]. J Alloy Compd, 2009, 480(2):L1-L4.
[17] GAO K, DAI C S, LV J, et al. Thermal dynamics and optim-ization on solid-state reaction for synthesis of Li2MnSiO4 mat-erials[J]. J Power Sources, 2012, 211:97-102.
[18] POLITAEV V V, PETRENKO A A, NALBANDYAN V B, et al. Crystal structure, phase relations and electrochemical prop-erties of monoclinic Li2MnSiO4[J]. J Solid State Chem, 2007, 180(3):1045-1050.
[19] ARAVINDAN V, RAVI S, KIM W S, et al. Size controlled synthesis of Li2MnSiO4 nanoparticles:effect of calcination temperature and carbon content for high performance lithium batteries[J]. J Colloid Interface Sci, 2011, 355(2):472-477.
[20] ARAVINDAN V, KARTHIKEYAN K, RAVI S, et al. Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties[J]. J Mater Chem, 2010, 20(35):7340-7343.
[21] GHOSH P, MAHANTY S, BASU R N. Improved electroch-emical performance of Li2MnSiO4/C composite synthesized by combustion technique[J]. J Electrochem Soc, 2009, 156(8):A677-A681.
[22] QU L, FANG S H, YANG L, et al. Synthesis and characteri-zation of high capacity Li2MnSiO4/C cathode material for lithium-ion battery[J]. J Power Sources, 2014, 252:169-175.
[23] LI Y X, GONG Z L, YANG Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries[J]. J Power Sources, 2007, 174(2):528-532.
[24] ZHANG Q Q, ZHUANG Q C, XU S D, et al. Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium ion batteries[J]. Ionics, 2012, 18(5):487-494.
[25] HWANG J, PARK S, PARK C, et al. Hydrothermal synthesis of Li2MnSiO4:mechanism and influence of precursor concen-tration on electrochemical properties[J]. Metals and Materials International, 2013, 19(4):855-860.
[26] LUO S H, WANG M, SUN W N. Fabricated and improved electrochemical properties of Li2MnSiO4 cathodes by hydrother-mal reaction for Li-ion batteries[J]. Ceramics International, 2012, 38(5):4325-4329.
[27] MURALIGANTH T, STROUKOFF K R, MANTHIRAM A. Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M=Mn and Fe) cathodes for lithium-ion batteries[J]. Chem Mat, 2010, 22(20):5754-5761.
[28] 庞维强,樊学忠,张教强. 纳米颗粒在制备过程中团聚现象的研究进展[J]. 化学工业与工程技术, 2008, 29(3):19-23. PANG W Q, FAN X Z, ZHANG J Q. Research progress on agglomeration of nanoparticle in its preparation[J]. Journal of Chemical Industry & Engineering, 2008, 29(3):19-23.
[29] DOMINKO R. Li2MSiO4 (M=Fe and/or Mn) cathode materials[J]. J Power Sources, 2008, 184(2):462-468.
[30] DONG Y, ZHANG W L, WANG C M, et al. Synthesis of La-doped Li2MnSiO4 nano-particle with high-capacity via polyol-assisted hydrothermal method[J]. Electrochimica Acta, 2015, 166:40-46.
[31] WANG Y C, ZHAO S X, ZHAI P Y, et al. Solvothermal syn-thesis and electrochemical performance of Li2MnSiO4/C cathode materials for lithium ion batteries[J]. J Alloy Compd, 2014, 614(10):271-276.
[32] LIU S K, XU J, LI D Z, et al. High capacity Li2MnSiO4/C nanocomposite prepared by sol-gel method for lithium-ion bat-teries[J]. J Power Sources, 2013, 232(18):258-263.
[33] ZHU J T, TANG H Q, TANG Z Y, et al. Facile one step syn-thesis and enhanced electrochemical performance of molybdenum dioxide and carbon co-modified lithium manganese silicate cath-ode materials for lithium-ion batteries[J]. Electrochimica Acta, 2015, 166:183-189.
[34] 罗绍华,李思,王铭. Li2Mn1-xMgxSiO4正极材料合成与电化学性能[J]. 稀有金属材料与工程, 2012, 41(9):118-122. LUO S H, LI S, WANG M. Synthesis and electrochemical performance of Li2Mn1-xMgxSiO4 cathode materials for Li-ion battery[J]. Rare Metal Mat Eng, 2012, 41(9):118-122.
[35] 胡传跃,郭军,文瑾. 锂离子电池Li2NixMn1-xSiO4(x=0.4~0.7)正极材料的电化学性能[J]. 矿冶工程, 2013, 33(2):112-115. HU C Y, GUO J, WEN J. Electrochemical performance of Li2NixMn1-xSiO4(x=0.4-0.7)cathode material for lithium ion batteries[J]. Min Metal Eng, 2013, 33(2):112-115.
[36] 刘文刚,许云华,杨蓉,等. Li2Mn0.9Ti0.1SiO4锂离子电池正极材料的合成及其性能[J]. 热加工工艺, 2009, 38(16):25-28. LIU W G, XU Y H, YANG R, et al. Preparation and perfor-mance of Li2Mn0.9Ti0.1SiO4 cathode material for lithium ion batteries[J]. Hot Working Technology, 2009, 38(16):25-28.
[1] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[2] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[3] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[6] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[7] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[8] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[9] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[10] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[11] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[14] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[15] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn