Abstract:Li2MnSiO4 cathode material for lithium ion batteries was successfully synthesized using a high pressure hydrothermal method.The influences of pressure, reaction temperature and precursor concentration on the preparation of Li2MnSiO4 were carefully studied. The structure, morphology and electrochemical properties of the samples were characterized and analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electrochemical test. The results show that well crystallized Li2MnSiO4 with high-purity material can be synthesized at high pressure. Moreover, higher precursor concentration is conducive to the formation of nanoscale particles of Li2MnSiO4. Electrochemical performance tests show that carbon-coated Li2MnSiO4/C composite has higher specific capacity than that of Li2MnSiO4.An initial specific discharge capacity of 178.6mAh·g-1 can be achieved for the Li2MnSiO4/C cathode material at 0.1C (the current density is 33.3mA·g-1) and a capacity retention of 97.1mAh·g-1 after 50 cycles is 54.4%. At the same time, Li2MnSiO4/C also shows smaller charge transfer resistance and higher lithium ion diffusion coefficient than that of Li2MnSiO4.
李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
LI Jia-jun, LIU Lei, LU Yu-xiao, SUN Zhi-jian, MA Lei. Preparation and electrochemical characteristics of nanoscale Li2MnSiO4 cathode material by high pressure hydrothermal method. Journal of Materials Engineering, 2019, 47(9): 108-115.
[1] NYTEN A, ABOUIMRANE A, ARMAND M, et al. Electro-chemical performance of Li2FeSiO4 as a new Li-battery cathode material[J]. Electrochem Commun, 2005, 7(2):156-160.
[2] KOKALJ A, DOMINKO R, MALI G, et al. Beyond one-ele-ctron reaction in Li cathode materials:designing Li2MnxFe1-xSiO4[J]. Chem Mat, 2007, 19(15):3633-3640.
[3] DENG C, ZHANG S, FU B L, et al. Characterization of Li2MnSiO4 and Li2eSiO4 cathode materials synthesized via a citric acid assisted sol-gel method[J]. Materials Chemistry and Physics, 2010, 120(1):14-17.
[4] DOMINKO R, BELE M, GABERSCEK M, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as pot-ential Li-battery cathode materials[J]. Electrochem Commun, 2006, 8(2):217-222.
[5] LIU L, WANG P F, LI J J, et al. Hydrothermal preparation and intrinsic transport properties of nanoscale Li2FeSiO4[J]. Solid State Ionics, 2018, 320:353-359.
[6] 胡国荣,曹雁冰,彭忠东,等. 微波合成法制备锂离子电池正极材料Li2FeSiO4[J]. 物理化学学报, 2009, 25(5):1004-1008. HU G R, CAO Y B, PENG Z D, et al. Preparation of Li2FeSiO4 cathode material for lithium-ion batteries by microwave synthesis[J]. Acta Physico-Chimica Sinica, 2009, 25(5):1004-1008.
[7] DOMINKO R, BELE M, KOKALJ A, et al. Li2MnSiO4 as a potential Li-battery cathode material[J]. J Power Sources, 2007, 174(2):457-461.
[8] DOMPABLO A D, ARMAND M, TARSCON J M, et al. On-demand design of polyoxianionic cathode materials based on elect-ronegativity correlations:an exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochem Commun, 2006, 8(8):1292-1298.
[9] 戴丽琴,吴锋,官亦标,等. 石墨烯-Li2MnSiO4复合正极材料的合成与电化学性能研究[J]. 化学学报, 2014, 72(5):583-589. DAI L Q, WU F, GUAN Y B, et al. Synthesis and electroch-emical performance of graphene-Li2MnSiO4 composite[J]. Acta Chim Sin, 2014, 72(5):583-589.
[10] AONO S, TSURUDO T, URITA K, et al. Direct synthesis of novel homogeneous nanocomposites of Li2MnSiO4 and carbon as a potential Li-ion battery cathode material[J]. Chem Commun, 2013, 49(28):2939-2941.
[11] BHASKAR A, DEEPA M, RAO T N, et al. In situ carbon coated Li2MnSiO4/C composites as cathodes for enhanced perfo-rmance Li-ion batteries[J]. J Electrochem Soc, 2012, 159(12):A1954-A1960.
[12] 高伟,包丽颖,苏岳锋,等. Li2MnSiO4/CNTs复合正极材料的合成与电化学性能[J]. 高等学校化学学报, 2013, 34(7):1709-1713. GAO W, BAO L Y, SU Y F, et al. Preparation and electroch-emical performance of Li2MnSiO4/CNTs composite cathode material for lithium ion batteries[J]. Chem J Chin Univ-Chin, 2013, 34(7):1709-1713.
[13] GUMMOW R J, SHARMA N, PETERSON V K, et al. Crystal chemistry of the Pmnb polymorph of Li2MnSiO4[J]. J Solid State Chem, 2012, 188(22):32-37.
[14] KARTHIKEYAN K, ARAVINDAN V, LEE S B, et al. Elec-trochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors[J]. J Power Sources, 2010, 195(11):3761-3764.
[15] LIU J, XU H Y, JIANG X L, et al. Facile solid-state synthesis of Li2MnSiO4/C nanocomposite as a superior cathode with a long cycle life[J]. J Power Sources, 2013, 231(6):39-43.
[16] LIU W G, XU Y H, YANG R. Synthesis, characterization and electrochemical performance of Li2MnSiO4/C cathode material by solid-state reaction[J]. J Alloy Compd, 2009, 480(2):L1-L4.
[17] GAO K, DAI C S, LV J, et al. Thermal dynamics and optim-ization on solid-state reaction for synthesis of Li2MnSiO4 mat-erials[J]. J Power Sources, 2012, 211:97-102.
[18] POLITAEV V V, PETRENKO A A, NALBANDYAN V B, et al. Crystal structure, phase relations and electrochemical prop-erties of monoclinic Li2MnSiO4[J]. J Solid State Chem, 2007, 180(3):1045-1050.
[19] ARAVINDAN V, RAVI S, KIM W S, et al. Size controlled synthesis of Li2MnSiO4 nanoparticles:effect of calcination temperature and carbon content for high performance lithium batteries[J]. J Colloid Interface Sci, 2011, 355(2):472-477.
[20] ARAVINDAN V, KARTHIKEYAN K, RAVI S, et al. Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties[J]. J Mater Chem, 2010, 20(35):7340-7343.
[21] GHOSH P, MAHANTY S, BASU R N. Improved electroch-emical performance of Li2MnSiO4/C composite synthesized by combustion technique[J]. J Electrochem Soc, 2009, 156(8):A677-A681.
[22] QU L, FANG S H, YANG L, et al. Synthesis and characteri-zation of high capacity Li2MnSiO4/C cathode material for lithium-ion battery[J]. J Power Sources, 2014, 252:169-175.
[23] LI Y X, GONG Z L, YANG Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries[J]. J Power Sources, 2007, 174(2):528-532.
[24] ZHANG Q Q, ZHUANG Q C, XU S D, et al. Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium ion batteries[J]. Ionics, 2012, 18(5):487-494.
[25] HWANG J, PARK S, PARK C, et al. Hydrothermal synthesis of Li2MnSiO4:mechanism and influence of precursor concen-tration on electrochemical properties[J]. Metals and Materials International, 2013, 19(4):855-860.
[26] LUO S H, WANG M, SUN W N. Fabricated and improved electrochemical properties of Li2MnSiO4 cathodes by hydrother-mal reaction for Li-ion batteries[J]. Ceramics International, 2012, 38(5):4325-4329.
[27] MURALIGANTH T, STROUKOFF K R, MANTHIRAM A. Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M=Mn and Fe) cathodes for lithium-ion batteries[J]. Chem Mat, 2010, 22(20):5754-5761.
[28] 庞维强,樊学忠,张教强. 纳米颗粒在制备过程中团聚现象的研究进展[J]. 化学工业与工程技术, 2008, 29(3):19-23. PANG W Q, FAN X Z, ZHANG J Q. Research progress on agglomeration of nanoparticle in its preparation[J]. Journal of Chemical Industry & Engineering, 2008, 29(3):19-23.
[29] DOMINKO R. Li2MSiO4 (M=Fe and/or Mn) cathode materials[J]. J Power Sources, 2008, 184(2):462-468.
[30] DONG Y, ZHANG W L, WANG C M, et al. Synthesis of La-doped Li2MnSiO4 nano-particle with high-capacity via polyol-assisted hydrothermal method[J]. Electrochimica Acta, 2015, 166:40-46.
[31] WANG Y C, ZHAO S X, ZHAI P Y, et al. Solvothermal syn-thesis and electrochemical performance of Li2MnSiO4/C cathode materials for lithium ion batteries[J]. J Alloy Compd, 2014, 614(10):271-276.
[32] LIU S K, XU J, LI D Z, et al. High capacity Li2MnSiO4/C nanocomposite prepared by sol-gel method for lithium-ion bat-teries[J]. J Power Sources, 2013, 232(18):258-263.
[33] ZHU J T, TANG H Q, TANG Z Y, et al. Facile one step syn-thesis and enhanced electrochemical performance of molybdenum dioxide and carbon co-modified lithium manganese silicate cath-ode materials for lithium-ion batteries[J]. Electrochimica Acta, 2015, 166:183-189.
[34] 罗绍华,李思,王铭. Li2Mn1-xMgxSiO4正极材料合成与电化学性能[J]. 稀有金属材料与工程, 2012, 41(9):118-122. LUO S H, LI S, WANG M. Synthesis and electrochemical performance of Li2Mn1-xMgxSiO4 cathode materials for Li-ion battery[J]. Rare Metal Mat Eng, 2012, 41(9):118-122.
[35] 胡传跃,郭军,文瑾. 锂离子电池Li2NixMn1-xSiO4(x=0.4~0.7)正极材料的电化学性能[J]. 矿冶工程, 2013, 33(2):112-115. HU C Y, GUO J, WEN J. Electrochemical performance of Li2NixMn1-xSiO4(x=0.4-0.7)cathode material for lithium ion batteries[J]. Min Metal Eng, 2013, 33(2):112-115.
[36] 刘文刚,许云华,杨蓉,等. Li2Mn0.9Ti0.1SiO4锂离子电池正极材料的合成及其性能[J]. 热加工工艺, 2009, 38(16):25-28. LIU W G, XU Y H, YANG R, et al. Preparation and perfor-mance of Li2Mn0.9Ti0.1SiO4 cathode material for lithium ion batteries[J]. Hot Working Technology, 2009, 38(16):25-28.