Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 29-37    DOI: 10.11868/j.issn.1001-4381.2018.000689
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比
徐鹏1, 王冠韬2, 刘奎1, 罗斯达2
1. 上海飞机制造有限公司 复合材料中心, 上海 201324;
2. 北京航空航天大学 机械工程及自动化学院, 北京 100191
Structure-property relationship of graphene/carbon nanotube enabled embeddable fiber sensors for in-situ monitoring of composites
XU Peng1, WANG Guan-tao2, LIU Kui1, LUO Si-da2
1. Center of Composites, Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China;
2. School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
全文: PDF(9415 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于碳纳米材料的纤维传感技术已成为复合材料原位结构健康监测领域中一项十分有前景的技术。本研究采用两种不同的碳纳米传感元件-碳纳米管(carbon nanotube,CNT)涂层纤维(carbon nanotube coated fibers,CNTF)和还原氧化石墨烯(reduced graphene oxide,RGO)涂层纤维(reduced graphene oxide coated fibers,RGOF),分别制造合成具有自传感特性的复合材料,并比较研究两种嵌入式纤维传感器的传感性能和机理。从两种传感器的压阻效应可看出:RGOF的压阻灵敏度更高,并清晰地展现出从线性至非线性的两阶段压阻行为;而CNTF,则在发生断裂前始终呈现出平稳而有序的电学信号。这种强烈的结构-性能关系,可以用树脂渗透理论加以阐释。对CNTF而言,树脂分子可以渗透到其多孔的网络结构中,形成集成在纤维表面完整的CNT/树脂纳米复合结构。相比之下,具有大横向尺寸和表面一致性的RGO则可形成阻碍树脂渗透的无创网络结构。对实验结果和传感机理的进一步分析与研究表明,CNTF适用于材料的力学状态识别与长期监测,而RGOF则对结构损伤的早期预警更有实用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐鹏
王冠韬
刘奎
罗斯达
关键词 碳纳米管还原氧化石墨烯纤维传感器复合材料结构健康监测    
Abstract:Carbon nanomaterials based sensing technology has become a promising technology in the field of structural health monitoring of composites. Self-sensing composites were achieved with varied sensing elements, including carbon nanotube (CNT) coated fibers (CNTF) and reduced graphene oxide (RGO) coated fibers (RGOF), to compare their sensing performance and mechanism. Piezoresistive response of varied sensors show that RGOF has higher piezoresistive sensitivity and clearly exhibits two-stage behavior from linear to non-linear; whereas, CNTF always exhibits a smooth and orderly electrical signal before fracture occurs. This strong structure-property relationship can be explained by resin infiltration theory. For CNTF, resin molecules can penetrate its porous network structure, forming a complete CNT/resin nanocomposite structure integrated on the fiber surface. In contrast, RGOs with large lateral dimensions and surface consistency can form non-invasive network structure that impedes resin penetration. Further analysis and study show that CNTF is more suitable for long-term monitoring and mechanical state recognition, while RGOF is more practical for the early warning of structural damage.
Key wordscarbon nanotube    reduced graphene oxide    fiber sensor    composites    structural health mon-itoring
收稿日期: 2018-06-09      出版日期: 2019-09-18
中图分类号:  V258  
通讯作者: 罗斯达(1985-),男,教授,博士,研究方向:柔性纳米材料及纳米复合材料、可穿戴传感及人机交互、先进航空材料结构健康监测,E-mail:s.luo@buaa.edu.cn     E-mail: s.luo@buaa.edu.cn
引用本文:   
徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
XU Peng, WANG Guan-tao, LIU Kui, LUO Si-da. Structure-property relationship of graphene/carbon nanotube enabled embeddable fiber sensors for in-situ monitoring of composites. Journal of Materials Engineering, 2019, 47(9): 29-37.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000689      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/29
[1] SUREEYATANAPAS P, HEJDA M, EICHHORN S J, et al. Comparing singlewalled carbon nanotubes and samarium oxide as strain sensors for model glass-fibre/epoxy composites[J]. Com-pos Sci Technol, 2010,70(1):88-93.
[2] DALLY J W, SANFORD R J. Strain-gage methods for measur-ing the opening-mode stress-intensity factor, K[J]. Exp Mech,1987, 27(4):381-388.
[3] GVEMES A,SIERRA J,GROOTEMAN F,et al. Methodologies for the damage detection based on fiber-optic sensors. applications to the fuselage panel and lower wing panel[M]. Smart Intelligent Aircraft Structures (SARISTU):Springer International Publ-ishing, 2016.
[4] PUREKAR, A S, PINES D J. Damage detection in thin compo-site laminates using piezoelectric phased sensor arrays and guided lamb wave interrogation[J]. J Intel Mat Syst Str, 2010, 21(10):995-1010.
[5] SADLER D J, CHONG H A. On chip eddy current sensor for proximity sensing and crack detection[J]. Sensor Actuat A-Phys, 2001, 91(3):340-345.
[6] KANNAN E, MAXFIELD B W, BALASUBRAMANIAM K. SHM of pipes using torsional waves generated by in situ magne-tostrictive tapes[J]. Smart Mater Struct,2007, 16(6):2505-2515.
[7] WINSTON H A, SUN F, ANNIGERI B S. Structural health monitoring with piezoelectric active sensors[J]. J Eng Gas Turb Power, 2001, 123(2):353-358.
[8] MA S, WU Z, WANG Y, et al. The reflection of guided waves from simple dents in pipes[J]. Ultrasonics, 2015, 57(1):190-197.
[9] ZHAO J, HE C, YANG R, et al. Ultra-sensitive strain sensors based on piezoresistive nanographene films[J]. Appl Phys Lett, 2012, 101(6):063112.
[10] 杨文彬,张丽,刘菁伟,等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3):91-97. YANG W B, ZHANG L, LIU J W, et al. Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering, 2015, 43(3):91-97.
[11] GAO L, CHOU T, THOSTENSON E T, et al. In situ sensing of impact damage in epoxy/glass fiber composites using percola-ting carbon nanotube networks[J]. Carbon, 2011, 49(10):3382-3385.
[12] GNIDAKOUONG J, ROH H, KIM J,et al. In situ process monitoring of hierarchical micro-/nano-composites using percol-ated carbon nanotube networks[J]. Compos Part A-Appl S, 2016, 84:281-291.
[13] LUO S, LIU T. Structure-property-processing relationships of single-wall carbon nanotube thin film piezoresistive sensors[J]. Carbon, 2013, 59(4):315-324.
[14] LUO S, LIU T. SWCNT/graphite nanoplatelet hybrid thin films for self-temperature-compensated, highly sensitive, and extensible piezoresistive sensors[J]. Adv Mater, 2013, 25(39):5650-5657.
[15] KANG I, SCHULZ M J, KIM J H, et al. A carbon nanotube strain sensor for structural health monitoring[J]. Smart Mater Struct, 2006, 15(3):737-748.
[16] LU S, CHEN D, WANG X, et al. Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor[J]. Compos Sci Technol, 2017, 152:181-189.
[17] MAKIREDDI S, SHIVAPRASAD S, KOSURI G,et al. Electro-elastic and piezoresistive behavior of flexible MWCNT/PMMA nanocomposite films prepared by solvent casting method for structural health monitoring applications[J].Compos Sci Technol,2015, 118:101-107.
[18] HUANG M, PASCAL T A, KIM H, et al. Electronic-mech-anical coupling in graphene from in situ nanoindentation exper-iments and multiscale atomistic simulations[J]. Nano Lett, 2011, 11(3):1241-1246.
[19] TAMRAKAR S, QI A, THOSTENSON E T, et al. Tailoring interfacial properties by controlling carbon nanotube coating thic-kness on glass fibers using electrophoretic deposition[J]. ACS Appl Mater Inter, 2015, 8(2):1501-1510.
[20] ZHAO H, ZHANG Y, BRADFORD P D, et al. Carbon nanot-ube yarn strain sensors[J]. Nanotechnology, 2010, 21(30):305502.
[21] ABOT J L, SONG Y, VATSAVAYA M S, et al. Delamination detection with carbon nanotube thread in self-sensing composite materials[J]. Compos Sci Technol, 2010, 70(7):1113-1119.
[22] ALEXOPOULOS N D, BARTHOLOME C, POULIN P, et al. Structural health monitoring of glass fiber reinforced composites using embedded CNT fibers[J]. Compos Sci Technol, 2010, 70(2):260-271.
[23] ZHANG J, LIU J, ZHUANG R,et al. Single MWNT-glass fiber as strain sensor and switch[J]. Adv Mater, 2011, 23(30):3392-3397.
[24] SEBASTIAN J, SCHEHL N, BOUCHARD M, et al. Health monitoring of structural composites with embedded carbon nano-tube coated glass fiber sensors[J]. Carbon,2014, 66(1):191-200.
[25] LUO S, OBITAYO W, LIU T. SWCNT-thin-film-enabled fiber sensors for lifelong structural health monitoring of polymeric composites-from manufacturing to utilization to failure[J]. Carbon, 2014, 76(9):321-329.
[26] LUO S, LIU T. Graphite nanoplatelet enabled embeddable fiber sensor for in situ curing monitoring and structural health monitoring of polymeric composites[J]. ACS Appl Mater Inter, 2014, 6(12):9314-9320.
[27] LUO S, WANG Y, WANG G, et al. CNT enabled co-braided smart fabrics:a new route for non-invasive, highly sensitive & large-area monitoring of composites[J]. Sci Rep-UK, 2017, 7:44056.
[28] REN X, BURTON J, SEIDEL G D, et al. Computational multiscale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites[J]. Int J Solids Stru-ct, 2015, 54:121-134.
[29] MORICHE R,JIMÉNEZ-SUÁREZ A,SÁNCHEZ M,et al. Graphene nanoplatelets coated glass fibre fabrics as strain sens-ors[J]. Compos Sci Technol, 2017, 146:59-64.
[30] 任小孟,王源升,何特. Hummers法合成石墨烯的关键工艺及反应机理[J]. 材料工程, 2013(1):1-5. REN X M, WANG Y S, HE T. Key processes and mechanism for preparing graphene by Hummers method[J]. Journal of Materials Engineering, 2013(1):1-5.
[31] HAO B, MA Q, YANG S, et al. Comparative study on monito-ring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating[J]. Compos Sci Technol,2016, 129(6):38-45.
[32] KUMAR R, AVASTHI DK, KAUR A. Fabrication of chemire-sistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature[J]. Sensor Actuat B-Chem, 2017, 242:461-468.
[33] FERRARI A C, ROBERTSON J. Interpretation of Raman spec-tra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20):14095-14107.
[34] FERRARI A C. Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun, 2007, 143(1/2):47-57.
[35] DRESSELHAUS M S, JORIO A, HOFMANN M, et al. Persp-ectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Lett, 2010,10(3):751-758.
[36] MALARD L M, PIMENTA M A, DRESSELHAUS G,et al. Raman spectroscopy in graphene[J]. Phys Rep, 2009, 473(5):51-87.
[37] SAITO R, GRVNEIS A, SAMSONIDZE G G, et al. Double resonance Raman spectroscopy of single-wall carbon nanotubes[J]. New J Phys, 2003, 5(1):157.
[38] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007, 45(7):1558-1565.
[39] HU N, WANG Y, CHAI J, et al. Gas sensor based on p-phen-ylenediamine reduced graphene oxide[J]. Sensor Actuat B-Chem, 2012, 163(1):107-114.
[40] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18):187401.
[41] FERRARI A C, BASKO D M. Raman spectroscopy as a versa-tile tool for studying the properties of graphene[J]. Nat Nanote-chnol, 2013, 8(4):235-246.
[42] LI Y, LUO S, YANG M, et al. Poisson ratio and piezoresistive sensing:a new route to high-performance 3D flexible and stretchable sensors of multimodal sensing capability[J]. Adv Funct Mater, 2016, 26(17):2900-2908.
[43] ALAMUSI, HU N, FUKUNAGA H, ATOBE S,et al. Piezo-resistive strain sensors made from carbon nanotubes based polymer nanocomposites[J]. Sensors, 2011, 11(11):10691-10723.
[44] YAMAZOE N, SHIMANOE K. Theory of power laws for semi-conductor gas sensors[J]. Sensor Actuat B Chem, 2008, 128(2):566-573.
[45] NING HU, TAKAOMI ITOI, TARO AKAGI, et al. Ultrasen-sitive strain sensors made from metal-coated carbon nanofiller/epoxy composites[J]. Carbon, 2013, 51(1):202-212.
[46] THEODOSIOU T C, SARAVANOS D A. Numerical investig-ation of mechanisms affecting the piezoresistive properties of cnt-doped polymers using multi-scale models[J]. Compos Sci Technol, 2010, 70(9):1312-1320.
[47] CHIACCHIARELLI L M, RALLINI M, MONTI M, et al. The role of irreversible and reversible phenomena in the piezo-resistive behavior of graphene epoxy nanocomposites applied to structural health monitoring[J]. Compos Sci Technol, 2013, 80(6):73-79.
[1] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[2] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[3] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[4] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[5] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[6] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[7] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[8] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[9] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[10] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[11] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[12] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[13] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[14] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[15] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn