Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 29-37    DOI: 10.11868/j.issn.1001-4381.2018.000689
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比
徐鹏1, 王冠韬2, 刘奎1, 罗斯达2
1. 上海飞机制造有限公司 复合材料中心, 上海 201324;
2. 北京航空航天大学 机械工程及自动化学院, 北京 100191
Structure-property relationship of graphene/carbon nanotube enabled embeddable fiber sensors for in-situ monitoring of composites
XU Peng1, WANG Guan-tao2, LIU Kui1, LUO Si-da2
1. Center of Composites, Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China;
2. School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
全文: PDF(9415 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于碳纳米材料的纤维传感技术已成为复合材料原位结构健康监测领域中一项十分有前景的技术。本研究采用两种不同的碳纳米传感元件-碳纳米管(carbon nanotube,CNT)涂层纤维(carbon nanotube coated fibers,CNTF)和还原氧化石墨烯(reduced graphene oxide,RGO)涂层纤维(reduced graphene oxide coated fibers,RGOF),分别制造合成具有自传感特性的复合材料,并比较研究两种嵌入式纤维传感器的传感性能和机理。从两种传感器的压阻效应可看出:RGOF的压阻灵敏度更高,并清晰地展现出从线性至非线性的两阶段压阻行为;而CNTF,则在发生断裂前始终呈现出平稳而有序的电学信号。这种强烈的结构-性能关系,可以用树脂渗透理论加以阐释。对CNTF而言,树脂分子可以渗透到其多孔的网络结构中,形成集成在纤维表面完整的CNT/树脂纳米复合结构。相比之下,具有大横向尺寸和表面一致性的RGO则可形成阻碍树脂渗透的无创网络结构。对实验结果和传感机理的进一步分析与研究表明,CNTF适用于材料的力学状态识别与长期监测,而RGOF则对结构损伤的早期预警更有实用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐鹏
王冠韬
刘奎
罗斯达
关键词 碳纳米管还原氧化石墨烯纤维传感器复合材料结构健康监测    
Abstract:Carbon nanomaterials based sensing technology has become a promising technology in the field of structural health monitoring of composites. Self-sensing composites were achieved with varied sensing elements, including carbon nanotube (CNT) coated fibers (CNTF) and reduced graphene oxide (RGO) coated fibers (RGOF), to compare their sensing performance and mechanism. Piezoresistive response of varied sensors show that RGOF has higher piezoresistive sensitivity and clearly exhibits two-stage behavior from linear to non-linear; whereas, CNTF always exhibits a smooth and orderly electrical signal before fracture occurs. This strong structure-property relationship can be explained by resin infiltration theory. For CNTF, resin molecules can penetrate its porous network structure, forming a complete CNT/resin nanocomposite structure integrated on the fiber surface. In contrast, RGOs with large lateral dimensions and surface consistency can form non-invasive network structure that impedes resin penetration. Further analysis and study show that CNTF is more suitable for long-term monitoring and mechanical state recognition, while RGOF is more practical for the early warning of structural damage.
Key wordscarbon nanotube    reduced graphene oxide    fiber sensor    composites    structural health mon-itoring
收稿日期: 2018-06-09      出版日期: 2019-09-18
中图分类号:  V258  
通讯作者: 罗斯达(1985-),男,教授,博士,研究方向:柔性纳米材料及纳米复合材料、可穿戴传感及人机交互、先进航空材料结构健康监测,E-mail:s.luo@buaa.edu.cn     E-mail: s.luo@buaa.edu.cn
引用本文:   
徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
XU Peng, WANG Guan-tao, LIU Kui, LUO Si-da. Structure-property relationship of graphene/carbon nanotube enabled embeddable fiber sensors for in-situ monitoring of composites. Journal of Materials Engineering, 2019, 47(9): 29-37.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000689      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/29
[1] SUREEYATANAPAS P, HEJDA M, EICHHORN S J, et al. Comparing singlewalled carbon nanotubes and samarium oxide as strain sensors for model glass-fibre/epoxy composites[J]. Com-pos Sci Technol, 2010,70(1):88-93.
[2] DALLY J W, SANFORD R J. Strain-gage methods for measur-ing the opening-mode stress-intensity factor, K[J]. Exp Mech,1987, 27(4):381-388.
[3] GVEMES A,SIERRA J,GROOTEMAN F,et al. Methodologies for the damage detection based on fiber-optic sensors. applications to the fuselage panel and lower wing panel[M]. Smart Intelligent Aircraft Structures (SARISTU):Springer International Publ-ishing, 2016.
[4] PUREKAR, A S, PINES D J. Damage detection in thin compo-site laminates using piezoelectric phased sensor arrays and guided lamb wave interrogation[J]. J Intel Mat Syst Str, 2010, 21(10):995-1010.
[5] SADLER D J, CHONG H A. On chip eddy current sensor for proximity sensing and crack detection[J]. Sensor Actuat A-Phys, 2001, 91(3):340-345.
[6] KANNAN E, MAXFIELD B W, BALASUBRAMANIAM K. SHM of pipes using torsional waves generated by in situ magne-tostrictive tapes[J]. Smart Mater Struct,2007, 16(6):2505-2515.
[7] WINSTON H A, SUN F, ANNIGERI B S. Structural health monitoring with piezoelectric active sensors[J]. J Eng Gas Turb Power, 2001, 123(2):353-358.
[8] MA S, WU Z, WANG Y, et al. The reflection of guided waves from simple dents in pipes[J]. Ultrasonics, 2015, 57(1):190-197.
[9] ZHAO J, HE C, YANG R, et al. Ultra-sensitive strain sensors based on piezoresistive nanographene films[J]. Appl Phys Lett, 2012, 101(6):063112.
[10] 杨文彬,张丽,刘菁伟,等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3):91-97. YANG W B, ZHANG L, LIU J W, et al. Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering, 2015, 43(3):91-97.
[11] GAO L, CHOU T, THOSTENSON E T, et al. In situ sensing of impact damage in epoxy/glass fiber composites using percola-ting carbon nanotube networks[J]. Carbon, 2011, 49(10):3382-3385.
[12] GNIDAKOUONG J, ROH H, KIM J,et al. In situ process monitoring of hierarchical micro-/nano-composites using percol-ated carbon nanotube networks[J]. Compos Part A-Appl S, 2016, 84:281-291.
[13] LUO S, LIU T. Structure-property-processing relationships of single-wall carbon nanotube thin film piezoresistive sensors[J]. Carbon, 2013, 59(4):315-324.
[14] LUO S, LIU T. SWCNT/graphite nanoplatelet hybrid thin films for self-temperature-compensated, highly sensitive, and extensible piezoresistive sensors[J]. Adv Mater, 2013, 25(39):5650-5657.
[15] KANG I, SCHULZ M J, KIM J H, et al. A carbon nanotube strain sensor for structural health monitoring[J]. Smart Mater Struct, 2006, 15(3):737-748.
[16] LU S, CHEN D, WANG X, et al. Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor[J]. Compos Sci Technol, 2017, 152:181-189.
[17] MAKIREDDI S, SHIVAPRASAD S, KOSURI G,et al. Electro-elastic and piezoresistive behavior of flexible MWCNT/PMMA nanocomposite films prepared by solvent casting method for structural health monitoring applications[J].Compos Sci Technol,2015, 118:101-107.
[18] HUANG M, PASCAL T A, KIM H, et al. Electronic-mech-anical coupling in graphene from in situ nanoindentation exper-iments and multiscale atomistic simulations[J]. Nano Lett, 2011, 11(3):1241-1246.
[19] TAMRAKAR S, QI A, THOSTENSON E T, et al. Tailoring interfacial properties by controlling carbon nanotube coating thic-kness on glass fibers using electrophoretic deposition[J]. ACS Appl Mater Inter, 2015, 8(2):1501-1510.
[20] ZHAO H, ZHANG Y, BRADFORD P D, et al. Carbon nanot-ube yarn strain sensors[J]. Nanotechnology, 2010, 21(30):305502.
[21] ABOT J L, SONG Y, VATSAVAYA M S, et al. Delamination detection with carbon nanotube thread in self-sensing composite materials[J]. Compos Sci Technol, 2010, 70(7):1113-1119.
[22] ALEXOPOULOS N D, BARTHOLOME C, POULIN P, et al. Structural health monitoring of glass fiber reinforced composites using embedded CNT fibers[J]. Compos Sci Technol, 2010, 70(2):260-271.
[23] ZHANG J, LIU J, ZHUANG R,et al. Single MWNT-glass fiber as strain sensor and switch[J]. Adv Mater, 2011, 23(30):3392-3397.
[24] SEBASTIAN J, SCHEHL N, BOUCHARD M, et al. Health monitoring of structural composites with embedded carbon nano-tube coated glass fiber sensors[J]. Carbon,2014, 66(1):191-200.
[25] LUO S, OBITAYO W, LIU T. SWCNT-thin-film-enabled fiber sensors for lifelong structural health monitoring of polymeric composites-from manufacturing to utilization to failure[J]. Carbon, 2014, 76(9):321-329.
[26] LUO S, LIU T. Graphite nanoplatelet enabled embeddable fiber sensor for in situ curing monitoring and structural health monitoring of polymeric composites[J]. ACS Appl Mater Inter, 2014, 6(12):9314-9320.
[27] LUO S, WANG Y, WANG G, et al. CNT enabled co-braided smart fabrics:a new route for non-invasive, highly sensitive & large-area monitoring of composites[J]. Sci Rep-UK, 2017, 7:44056.
[28] REN X, BURTON J, SEIDEL G D, et al. Computational multiscale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites[J]. Int J Solids Stru-ct, 2015, 54:121-134.
[29] MORICHE R,JIMÉNEZ-SUÁREZ A,SÁNCHEZ M,et al. Graphene nanoplatelets coated glass fibre fabrics as strain sens-ors[J]. Compos Sci Technol, 2017, 146:59-64.
[30] 任小孟,王源升,何特. Hummers法合成石墨烯的关键工艺及反应机理[J]. 材料工程, 2013(1):1-5. REN X M, WANG Y S, HE T. Key processes and mechanism for preparing graphene by Hummers method[J]. Journal of Materials Engineering, 2013(1):1-5.
[31] HAO B, MA Q, YANG S, et al. Comparative study on monito-ring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating[J]. Compos Sci Technol,2016, 129(6):38-45.
[32] KUMAR R, AVASTHI DK, KAUR A. Fabrication of chemire-sistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature[J]. Sensor Actuat B-Chem, 2017, 242:461-468.
[33] FERRARI A C, ROBERTSON J. Interpretation of Raman spec-tra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20):14095-14107.
[34] FERRARI A C. Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun, 2007, 143(1/2):47-57.
[35] DRESSELHAUS M S, JORIO A, HOFMANN M, et al. Persp-ectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Lett, 2010,10(3):751-758.
[36] MALARD L M, PIMENTA M A, DRESSELHAUS G,et al. Raman spectroscopy in graphene[J]. Phys Rep, 2009, 473(5):51-87.
[37] SAITO R, GRVNEIS A, SAMSONIDZE G G, et al. Double resonance Raman spectroscopy of single-wall carbon nanotubes[J]. New J Phys, 2003, 5(1):157.
[38] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007, 45(7):1558-1565.
[39] HU N, WANG Y, CHAI J, et al. Gas sensor based on p-phen-ylenediamine reduced graphene oxide[J]. Sensor Actuat B-Chem, 2012, 163(1):107-114.
[40] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18):187401.
[41] FERRARI A C, BASKO D M. Raman spectroscopy as a versa-tile tool for studying the properties of graphene[J]. Nat Nanote-chnol, 2013, 8(4):235-246.
[42] LI Y, LUO S, YANG M, et al. Poisson ratio and piezoresistive sensing:a new route to high-performance 3D flexible and stretchable sensors of multimodal sensing capability[J]. Adv Funct Mater, 2016, 26(17):2900-2908.
[43] ALAMUSI, HU N, FUKUNAGA H, ATOBE S,et al. Piezo-resistive strain sensors made from carbon nanotubes based polymer nanocomposites[J]. Sensors, 2011, 11(11):10691-10723.
[44] YAMAZOE N, SHIMANOE K. Theory of power laws for semi-conductor gas sensors[J]. Sensor Actuat B Chem, 2008, 128(2):566-573.
[45] NING HU, TAKAOMI ITOI, TARO AKAGI, et al. Ultrasen-sitive strain sensors made from metal-coated carbon nanofiller/epoxy composites[J]. Carbon, 2013, 51(1):202-212.
[46] THEODOSIOU T C, SARAVANOS D A. Numerical investig-ation of mechanisms affecting the piezoresistive properties of cnt-doped polymers using multi-scale models[J]. Compos Sci Technol, 2010, 70(9):1312-1320.
[47] CHIACCHIARELLI L M, RALLINI M, MONTI M, et al. The role of irreversible and reversible phenomena in the piezo-resistive behavior of graphene epoxy nanocomposites applied to structural health monitoring[J]. Compos Sci Technol, 2013, 80(6):73-79.
[1] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[2] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[3] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[6] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[7] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[8] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[9] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[10] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[11] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[12] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[13] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[14] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[15] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn