Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (2): 99-106    DOI: 10.11868/j.issn.1001-4381.2018.000699
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征
王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安
北京有色金属研究总院 有色金属材料制备加工国家重点实验室, 北京 100088
Hot compressive deformation behavior and microstructure characteristics of new ultra strength Al-Zn-Mg-Cu alloy
WANG Yu, XIONG Bai-qing, LI Zhi-hui, WEN Kai, HUANG Shu-hui, LI Xi-wu, ZHANG Yong-an
State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088, China
全文: PDF(7970 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用Gleeble-1500热模拟试验机对新型超高强Al-Zn-Mg-Cu-Zr-Sc合金进行高温热压缩实验,研究该合金在变形温度370~460℃、应变速率0.001~10s-1条件下的流变应力以及变形过程中的显微组织。结果表明:流变应力在变形初期随着应变的增加迅速增大,出现峰值应力后逐渐下降并达到稳态,流变应力随着应变速率的增大而增大,随着变形温度的升高而下降;流变应力可以采用双曲正弦形式的关系来描述,通过线性拟合计算出该材料的形变激活能等参数,获得流变应力的本构方程。随着变形温度升高和应变速率降低,原始晶粒变形程度显著增加,再结晶分数明显上升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宇
熊柏青
李志辉
温凯
黄树晖
李锡武
张永安
关键词 热压缩流变应力显微组织本构方程Al-Zn-Mg-Cu-Zr-Sc合金    
Abstract:The hot compression test of the new ultra strength Al-Zn-Mg-Cu-Zr-Sc alloy at high temperature was carried out by using the Gleeble-1500 thermal simulator. The flow stress and microstructure evolution during the deformation process of the new alloy were investigated at the deformation temperature 370-460℃, the strain rate 0.001-10s-1. The results show that the flow stress in the early deformation stage increases with the increase of the strain rapidly, and then the peak stress decreases gradually and reaches a steady state. The flow stress increases with increasing strain rate, and decreases with the increase of deformation temperature. The flow stress can be described with hyperbolic sine relationship, and material parameters such as activation energy can be calculated by linear fitting, thus the constitutive equation of flow stress can be presented finally. With the increase of the deformation temperature and the decrease of the strain rate, the deformation degree of the original grain increases significantly, and the recrystallization fraction increases obviously.
Key wordshot compression    flow stress    microstructure    constitutive equation    Al-Zn-Mg-Cu-Zr-Sc alloy
收稿日期: 2018-06-11      出版日期: 2019-02-21
中图分类号:  TG146.2+1  
通讯作者: 熊柏青(1963-),男,博士,教授,主要从事航空航天飞行器制造用高强高韧铝合金材料研究,联系地址:北京市新街口外大街2号(100088),E-mail:xiongbq@grinm.com     E-mail: xiongbq@grinm.com
引用本文:   
王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
WANG Yu, XIONG Bai-qing, LI Zhi-hui, WEN Kai, HUANG Shu-hui, LI Xi-wu, ZHANG Yong-an. Hot compressive deformation behavior and microstructure characteristics of new ultra strength Al-Zn-Mg-Cu alloy. Journal of Materials Engineering, 2019, 47(2): 99-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000699      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/99
[1] HEINZ A, HASZLER A, KEIDEL C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering:A, 2000, 280(1):102-107.
[2] WARNER T. Recently-developed aluminium solutions for aerospace applications[J]. Materials Science Forum, 2006, 519/521:1271-1278.
[3] LIU J. Advanced aluminium and hybrid aerostructures for future aircraft[J]. Materials Science Forum, 2006, 519/521:1233-1238.
[4] DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56:862-871.
[5] MILMAN Y V, SIRKO A I, LOTSKO D V, et al. Microstructure and mechanical properties of cast and wrought Al-Zn-Mg-Cu alloys modified with Zr and Sc[J]. Materials Science Forum, 2002, 396/402:1217-1222.
[6] MUKHOPADHYAY A K, KUMAR A, RAVEENDRA S, et al. Development of grain structure during superplastic deformation of an Al-Zn-Mg-Cu-Zr alloy containing Sc[J]. Scripta Materialia, 2011, 64(5):386-389.
[7] MENG Y, ZHAO Z H, CUI J Z. Effect of minor Zr and Sc on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):1882-1889.
[8] LIU J, YAO P, ZHAO N Q, et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657:717-725.
[9] YIN Z M, PAN Q L, ZHANG Y H, et al. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J]. Materials Science and Engineering:A, 2000, 280(1):151-155.
[10] RØYSET J, RYUM N. Scandium in aluminium alloys[J]. International Materials Reviews, 2005, 50(1):19-44.
[11] 陈修梵,彭小燕,张慧颖,等. 7050铝合金热压缩变形的流变行为及微观组织演变[J]. 特种铸造及有色合金, 2015, 35(12):1237-1242. CHEN X F, PENG X Y, ZHANG H Y, et al. Characterization of flow behavior and microstructural evolution of 7050 aluminum alloy during hot compression process[J]. Special Casting & Nonferrous Alloys, 2015, 35(12):1237-1242.
[12] 隆平,潘清林,周坚,等. 7B50铝合金热压缩变形行为与预测[J]. 轻金属, 2014(1):51-54. LONG P, PAN Q L, ZHOU J, et al. Hot compressive deformation behavior and flow stress prediction of 7B50 aluminum alloy[J]. Light Metals, 2014(1):51-54.
[13] KAIBYSHEV R, SITDIKOV O, GOLOBORODKO A, et al. Grain refinement in as-cast 7475 aluminum alloy under hot deformation[J]. Materials Science and Engineering:A, 2003, 344(1/2):348-356.
[14] 徐雪峰,肖尧,刘琪,等. LF2M铝合金薄壁管材的热压缩变形行为及热加工图[J]. 材料热处理学报, 2018, 39(2):145-151. XU X F, XIAO Y, LIU Q, et al. Hot compression deformation behavior and processing map of LF2M aluminum alloy thin-walled tube[J]. Transactions of Materials and Heat Treatment, 2018, 39(2):145-151.
[15] 寇琳媛,金能萍,张辉,等. 7150铝合金高温热压缩变形流变应力行为[J]. 中国有色金属学报, 2010, 20(1):43-48. KOU L Y, JIN N P, ZHANG H, et al. Flow stress behavior of 7150 aluminum alloy during hot compression deformation at elevated temperature[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1):43-48.
[16] 李成侣,潘清林,刘晓艳,等. 2124铝合金的热压缩变形和加工图[J]. 材料工程, 2010(4):10-14. LI C L, PAN Q L, LIU X Y, et al. Hot compression deformation and processing maps of 2124 aluminum alloy[J]. Journal of Materials Engineering, 2010(4):10-14.
[17] 王忠军,付学丹,朱晶,等.ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3):102-111. WANG Z J, FU X D, ZHU J, et al. Hot compressive deformation and processing maps of ZK60 and ZK60-1.0Er magnesium alloy[J]. Journal of Materials Engineering, 2017, 45(3):102-111.
[18] 易幼平,杨积慧,蔺永诚. 7050铝合金热压缩变形的流变应力本构方程[J]. 材料工程, 2007(4):20-22. YI Y P, YANG J H, LIN Y C. Flow stress constitutive equation of 7050 aluminum alloy during hot compression[J]. Journal of Materials Engineering, 2007(4):20-22.
[19] 臧金鑫,郑林斌,张坤,等. 新型超高强Al-Zn-Mg-Cu铝合金热压缩变形的流变应力行为[J]. 航空材料学报, 2011, 31(3):35-39. ZANG J X, ZHENG L B, ZHANG K, et al. Flow stress behavior of a new high strength Al-Zn-Mg-Cu alloy during hot compression deformation[J]. Journal of Aeronautical Materials, 2011, 31(3):35-39.
[20] 谢金乐,刘允中,吴汇江,等. 半固态7050铝合金热压缩变形行为[J]. 特种铸造及有色合金, 2011, 31(9):816-819. XIE J L, LIU Y Z, WU H J, et al. Hot compression behavior of semi-solid 7050 aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2011, 31(9):816-819.
[21] POIRIER J P. 晶体的高温塑性变形[M].大连:大连理工大学出版社, 1989. POIRIER J P. High temperature plastic deformation of crystal[M]. Dalian:Dalian University of Technology Press, 1989.
[1] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[2] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[3] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[4] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[5] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[6] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[7] 黄高仁, 孙乙萌, 张利, 刘玉林. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114.
[8] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[9] 邓德伟, 牛婷婷, 田鑫, 刘海英, 孙奇, 张林. 水导轴承等离子堆焊Ni60合金组织及其耐腐蚀性能[J]. 材料工程, 2018, 46(5): 106-111.
[10] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[11] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[12] 刘伟, 熊华平, 李能, 陈波. 激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响[J]. 材料工程, 2018, 46(2): 27-33.
[13] 贺毅强, 徐虎林, 钱晨晨, 丁云飞, 冯文, 陈劲松, 李化强, 冯立超. 基体成分对SiCP/Al-Fe-V-Si复合材料显微组织与性能的影响[J]. 材料工程, 2018, 46(12): 124-130.
[14] 邢如飞, 许星元, 黄双君, 王磊, 周松, 许良. 激光沉积修复TA15钛合金微观组织及力学性能[J]. 材料工程, 2018, 46(12): 144-150.
[15] 倪永恒, 朱有利, 侯帅. 超声冲击处理时间对17CrNiMo6钢表层组织细化与性能的影响[J]. 材料工程, 2018, 46(11): 155-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn