Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 104-110    DOI: 10.11868/j.issn.1001-4381.2018.000701
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理
李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田
东北大学 资源与土木工程学院, 沈阳 110819
Preparation of GO/TiO2 composite photocatalyst and treatment of synthetic dye wastewater
LI Dan-dan, YAO Guang-zheng, LIANG Gui-yan, RONG Xu-fa, XUE Ruo-yu, FU Zhong-tian
School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(2686 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 用氧化石墨烯(GO)和TiO2水凝胶制备一系列GO/TiO2复合光催化剂。通过SEM,XRD和Raman光谱等对复合光催化剂进行表征,研究不同实验条件下纯TiO2和复合光催化剂对亚甲基蓝(MB)染料废水的脱色效果。结果表明:复合光催化剂中的TiO2主要为锐钛矿相,其光催化活性优于纯TiO2。当GO的复合量达到15%(质量分数)时,光催化活性最高。在浓度为10mg/L、初始pH值约为8的30mL合成废水中加入250mg复合光催化剂,2.5h后脱色率可达93.1%。通过复合氧化石墨烯,以TiO2为主要成分的复合光催化剂具有一定的可见光光催化活性。根据处理前后模拟废水的紫外-可见光光谱全波扫描结果推测,GO/TiO2复合光催化剂的光生电荷会直接破坏MB分子中的发光基团,在处理过程中没有新的发光基团产生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李丹丹
姚广铮
梁桂琰
荣旭发
薛若雨
付忠田
关键词 GO-TiO2光催化活性亚甲基蓝紫外光    
Abstract:A series of composite photocatalysts were prepared by using graphene oxide (GO) and TiO2 hydrogel. The composite photocatalyst was characterized through SEM, XRD and Raman spectroscopy, the decolorization effect of pure TiO2 and composite photocatalyst on methylene blue (MB) dye wastewater under different experimental conditions was studied. The results show that TiO2 in composite photocatalyst is mainly anatase phase and its photocatalytic activity is better than pure TiO2. When the addition of GO reaches 15%(mass fraction), the photocatalytic activity is the highest. When 250mg composite photocatalyst is added to 30mL synthetic wastewater with a concentration of 10mg/L and an initial pH value of about 8, the decolorization rate can reach 93.1% after 2.5 hours, and the composite photocatalyst has visible photocatalytic activity. It is presumed that the photogenerated charges of GO/TiO2 composite photocatalyst may directly destroy the luminescent groups in the MB molecule,and no other new luminescent groups are generated during the treatment.
Key wordsGO-TiO2    photocatalytic activity    methylene blue    ultraviolet light
收稿日期: 2018-06-11      出版日期: 2019-12-17
中图分类号:  X522  
基金资助: 
通讯作者: 付忠田(1974-),男,讲师,博士,主要从事电化学及光催化水污染控制方面的研究工作,联系地址:辽宁省沈阳市和平区文化路三巷11号东北大学265#信箱(110819),E-mail:fuzhongtian@mail.neu.edu.cn     E-mail: fuzhongtian@mail.neu.edu.cn
引用本文:   
李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019, 47(12): 104-110.
LI Dan-dan, YAO Guang-zheng, LIANG Gui-yan, RONG Xu-fa, XUE Ruo-yu, FU Zhong-tian. Preparation of GO/TiO2 composite photocatalyst and treatment of synthetic dye wastewater. Journal of Materials Engineering, 2019, 47(12): 104-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000701      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/104
[1] ANSARI S A,KHAN M M,ANSARI M O,et al.Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite[J].Solar Energy Materials and Solar Cells,2015,141:162-170.
[2] DOZZI M V,SELLI E.Doping TiO2 with p-block elements:effects on photocatalytic activity[J].Journal of Photochemistry and Photobiology:C,2013,14:13-28.
[3] SCHNEIDER J,MATSUOKA M,TAKEUCHI M,et al.Understanding TiO2 photocatalysis:mechanisms and materials[J].Chemical Reviews,2014,114(19):9919-9986.
[4] IVANOV S,BARYLYAK A,BESAHA K,et al.Synthesis,characterization,and photocatalytic properties of sulfur- and carbon-codoped TiO2 nanoparticles[J].Nanoscale Res Lett,2016,11(1):140-151.
[5] TRUPPI A,PETRONELLA F,PLACIDO T,et al.Visible-light-active TiO2-based hybrid nanocatalysts for environmental applications[J].Catalysts,2017,7(4):100-132.
[6] 赵慧敏,苏芳,范新飞,等.石墨烯-二氧化钛复合催化剂对光催化性能的提高[J].催化学报,2012,33(5):777-782. ZHAO H M,SU F,FAN X F,et al.Graphene-TiO2 composite photocatalyst with enhanced photocatalytic performance[J].Chinese Journal of Catalysis,2012,33(5):777-782.
[7] BALANDIN A A.Thermal properties of graphene and nanostructured carbon materials[J].Nat Mater,2011,8(10):569-581.
[8] NOVOSELOV K S,FALKO V I,COLOMBO L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.
[9] SENGUPTA R,BHATTACHARYA M,BANDYOPADHYAY S.et al.A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J].Progress in Polymer Science,2011,36(5):638-670.
[10] YANG J,DENG S Y,LEI J P,et al.Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing[J].Biosensors & Bioelectronics,2011,29(1):156-166.
[11] BAI L,YUAN R,CHAI Y,et al.Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets[J].Biomaterials,2012,33(4):1090-1096.
[12] HASS J,De HEER W A,CONRAD E H,et al.The growth and morphology of epitaxial multilayer graphene[J].Journal of Physics:Condensed Matter,2008,20(32):323202.
[13] YOO E,KIM J,HOSONO E,et al.Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J].Nano Lett,2008,8(8):2277-2282.
[14] RYZHII V,RYZHII M,SATOU A,et al.Device model for graphene bilayer field-effect transistor[J].Journal of Applied Physics,2009,105(10):104510.
[15] SU X L,FU L,CHENG M Y,et al.3D nitrogen-doped graphene aerogel nanomesh:facile synthesis and electrochemical properties as the electrode materials for supercapacitors[J].Applied Surface Science,2017,426:924-932.
[16] GU Z G,YANG S P,LI Z J,et al.An ultrasensitive hydrogen peroxide biosensor based on electrocatalytic synergy of graphene-gold nanocomposite,CdTe-CdS core-shell quantum dots and gold nanoparticles[J].Anal Chim Acta,2011,701(1):75-80.
[17] 董慧民,牟维琦,史海燕,等.石墨烯填充丁腈橡胶纳米复合材料研究进展[J].航空材料学报,2018,38(5):36-46. DONG H M,MU W Q,SHI H Y,et al.Research progress of acrylonitrile-butadiene rubber nanocomposites filled with graphene[J].Journal of Aeronautical Materials,2018,38(5):36-46.
[18] 刘红娟,谢水波,张希晨,等.氧化石墨烯复合材料吸附铀的研究进展[J].材料工程,2018,46(5):11-21. LIU H J,XIE S B,ZHANG X C,et al.Research progress of graphene oxide composite materials for uranium adsorption[J].Journal of Materials Engineering,2018,46(5):11-21.
[19] ZHANG L,ZHANG Q H,XIE H Y,et al.Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis[J].Applied Catalysis:B,2017,201:470-478.
[20] LIU N,LIANG G,DONG X W,et al.Stabilized magnetic enzyme aggregates on graphene oxide for high performance phenol and bisphenol A removal[J].Chemical Engineering Journal,2016,306:1026-1034.
[21] BHARAD P A,SIVARANJANI K,GOPINATH C S,et al.A rational approach towards enhancing solar water splitting:a case study of Au-RGO/N-RGO-TiO2[J].Nanoscale,2015,7(25):11203-11215.
[22] NOURI E,MOHAMMADI M R,LIANOS P,et al.Impact of preparation method of TiO2-RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells[J].Electrochimica Acta,2016,219:38-48.
[23] HUMMERS W S Jr,OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
[24] FAN Y,LU H T,LIU J H,et al.Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite[J].Colloids Surf B Biointerfaces,2011,83(1):78-82.
[25] 马利静,郭烈锦.不同原料合成的TiO2的变温拉曼光谱分析[J].化学学报,2006,64(9):863-867. MA L J,GUO L J.Study on the thermo-Raman spectrum of TiO2 prepared with different precursors[J].Acta Chimica Sinica,2006,64(9):863-867.
[26] LIANG D Y,CUI C,HU H H,et al.One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity[J].Journal of Alloys and Compounds,2014,582:236-240.
[27] KANSAL S,SINGH M,SUD D.Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts[J].Journal of Hazardous Materials,2012,141(3):581-590.
[28] 朱永法,姚文清,宗瑞隆.光催化环境净化与绿色能源应用探索[M].北京:化学工业出版社,2014:127. ZHU Y F,YAO W Q,ZONG R L.Photocatalysis:application on environmental purification and green energy[M].Beijing:Chemical Industry Press,2014:127.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[3] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[4] 侯桂香, 谢建强, 李婷婷, 高俊刚, 常娇. MAP-POSS/不饱和环氧树脂混杂光固化膜制备与性能[J]. 材料工程, 2017, 45(8): 49-54.
[5] 王丹军, 申会东, 郭莉, 张洁, 付峰. 三维介孔Bi2WO6光催化剂的制备及无机离子对其光催化活性的影响[J]. 材料工程, 2016, 44(2): 8-16.
[6] 鲍艳, 张永辉, 马建中. 溶液法制备ZnO纳米阵列的影响因素及光催化活性[J]. 材料工程, 2015, 43(8): 19-24.
[7] 刘宇艳, 隋微微, 方佳莹, 谭惠丰, 杜星文. 二芳基碘鎓盐CD-1012/环氧E-51紫外固化动力学研究[J]. 材料工程, 2008, 0(5): 43-47.
[8] 王振华, 主沉浮, 董厚欢, 蔡元兴. 氮、铅改性二氧化钛光催化活性的研究[J]. 材料工程, 2008, 0(5): 66-70.
[9] 袁昊, 解丽丽, 田震, 王利军. 低介电常数纯硅数分子筛薄膜的制备与表征[J]. 材料工程, 2008, 0(10): 110-113.
[10] 薄澜, 王生杰, 孔杰. 聚硅氧烷的紫外光固化特性及热解机理研究[J]. 材料工程, 2007, 0(9): 62-66.
[11] 邱成军, 曹茂盛, 张辉军, 刘红梅, 田风军, 刘鑫. 磁控溅射制备掺银TiO2薄膜的光催化特性研究[J]. 材料工程, 2005, 0(10): 35-37,46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn