Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (9): 116-122    DOI: 10.11868/j.issn.1001-4381.2018.000734
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能
马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕()
西北工业大学 理学院, 西安 710129
Structure and properties of POSS-(PMMA46)8 impregnated commercial polypropylene separator
Jing-yu MA, Kai-qi YANG, Min ZHANG, Han YANG, Xiao-yan MA()
School of Science, Northwestern Polytechnical University, Xi'an 710129, China
全文: PDF(7261 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

为了提高锂离子电池的安全性能,降低其界面阻抗,选用既具有优异耐热性能又与聚合物有良好相容性的POSS杂化聚甲基丙烯酸甲酯(POSS-(PMMA468)作为改性剂,通过在商业聚丙烯(PP)隔膜上浸渍POSS-(PMMA468制备改性商用PP隔膜,分析隔膜的力学性能、热收缩性能、界面性能、离子电导率及电化学性能。结果表明:当POSS-(PMMA468质量分数为40%时,复合膜的孔丰富均一,润湿性最佳,拉伸强度是未改性前的5.34倍,且在160℃/1h下具有较高的热稳定性。此复合膜电导率为1.35×10-3 S/cm,与电极的界面阻抗由原来的743Ω降为152Ω;Li/改性隔膜/LiFePO4扣式电池的充放电循环稳定性较好,低倍率下的电池容量与商业PP隔膜相当。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马敬玉
杨凯淇
张敏
杨晗
马晓燕
关键词 锂离子电池浸渍POSS-(PMMA46)8热稳定性隔膜    
Abstract

In order to improve the safety and reduce interface impedance of lithium-ion batteries, the star-shaped polyhedral POSS-poly(methyl methacrylate) (POSS-(PMMA46)8), which has both excellent heat resistance and good compatibility with the polymer material, was selected as a modifier to modify the separator of commercial polypropylene (PP) by the method of impregnation. The micromorphology of the composite separator was studied by scanning electron microscope (SEM). The mechanical property of the separator was measured by a tensile tester. The thermal stability of the separator was studied at a high temperature. The wettability of the separator was tested by a contact angle tester. The AC impedance was used to obtain the bulk impedance of the composite separator and then its ionic conductivity was studied. The electrochemical stability of the separator was measured by linear sweep voltammetry (LSV). The results show that when the mass fraction of POSS-(PMMA46)8 is 40%, the pore distribution of the composite membrane is homogeneous, and the wettability is the best. The tensile strength is 5.34 times that of the original film, and the thermo-stability is ideal at 160℃/1h. The conductivity of the composite membrane is 1.35×10-3 S/cm. The interface resistance between the composite separator and the electrode is reduced from 743Ω to 152Ω, and which is 79.5% higher than that of the original film; for Li/Separator/LiFePO4 cell, the charge-discharge cycling stability is better and the battery capacity at low magnification is comparable to commercial PP separator.

Key wordsLi-ion battery    impregnation    POSS-(PMMA46)8    thermal stability    separator
收稿日期: 2018-06-21      出版日期: 2019-09-18
中图分类号:  TM912  
基金资助:陕西省科技统筹创新工程计划项目(2016KTZDGY10-01);陕西省自然科学基金(2013JQ2010);陕西省自然科学基金(2013JM2012)
通讯作者: 马晓燕     E-mail: m_xiao_yana@nwpu.edu.cn
作者简介: 马晓燕(1963-), 女, 教授, 博士, 研究方向为新化学电源的设计及新化学电源材料的设计与合成, 有机/无机杂化材料和高性能树脂及其纳米复合材料研究, 联系地址:陕西省西安市长安区西北工业大学长安校区西北工业大学理学院(710129), E-mail:m_xiao_yana@nwpu.edu.cn
引用本文:   
马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
Jing-yu MA, Kai-qi YANG, Min ZHANG, Han YANG, Xiao-yan MA. Structure and properties of POSS-(PMMA46)8 impregnated commercial polypropylene separator. Journal of Materials Engineering, 2019, 47(9): 116-122.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000734      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/116
Fig.1  PP隔膜和不同POSS-(PMMA46)8含量的复合隔膜的SEM照片
(a)PP隔膜;(b)10%;(c)20%;(d)30%;(e)40%;(f)50%
Fig.2  PP隔膜和POSS-(PMMA46)8复合隔膜的电解液润湿性
Fig.3  PP隔膜和POSS-(PMMA46)8复合隔膜对电解液接触角
Fig.4  不同隔膜的吸液率(a)和力学性能(b)
Fig.5  不同隔膜的热稳定性
Fig.6  不同隔膜的界面阻抗(a),离子电导率(b)及电化学稳定性(c)
Fig.7  不同隔膜组装电池恒电流下50次循环放电曲线(a),首次放电曲线(b)和40%POSS-(PMMA46)8复合隔膜所组装电池的倍率性能(c)
1 YANG K Q , MA X Y , SUN K , et al. Electrospun octa(3-chloropropyl)-polyhedral oligomeric silsesquioxane-modified polyvinylidene fluoride/poly(acrylonitrile)/poly(methylmethacr-ylate) gel polymer electrolyte for high-performance lithium ion battery[J]. Journal of Solid State Electrochemistry, 2018, 22 (2): 441- 452.
doi: 10.1007/s10008-017-3758-1
2 YU L H , JIN Y , LIN Y S . Ceramic coated polypropylene separators for lithium-ion batteries with improved safety:effects of high melting point organic binder[J]. RSC Advances, 2016, 6 (46): 40002- 40009.
doi: 10.1039/C6RA04522G
3 CHENG Q H , HE W , ZHANG X D , et al. Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries[J]. RSC Advances, 2016, 6 (13): 10250- 10265.
doi: 10.1039/C5RA21670B
4 YU L H , MIAO J S , JIN Y , et al. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries[J]. Frontiers of Chemical Science and Engineering, 2017, 11 (3): 346- 352.
doi: 10.1007/s11705-017-1648-9
5 马敬玉, 孙坤, 马晓燕, 等. 静电纺丝法制备POSS-(C3H6Cl)8复合聚偏氟乙烯聚合物隔膜的结构与性能[J]. 高分子材料科学与工程, 2018, 34 (6): 54- 59.
5 MA J Y , SUN K , MA X Y , et al. Structure and property of electrospinning POSS-(C3H6Cl)8 composite PVDF polymer separators[J]. Polymer Materials Science & Engineering, 2018, 34 (6): 54- 59.
6 SHI C , DAI J H , SHEN X , et al. A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries[J]. Journal of Membrane Science, 2016, 517, 91- 99.
doi: 10.1016/j.memsci.2016.06.035
7 XIONG Q Q , ZHENG C , CHI H Z , et al. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes[J]. Nanotechnology, 2017, 28 (5): 055405.
doi: 10.1088/1361-6528/28/5/055405
8 LI Z G , MA X Y , GUAN X H , et al. Aggregation behavior of star-shaped fluoropolymers containing polyhedral oligomeric silsesquioxane (POSS) at the air-water interface[J]. Colloid and Polymer Science, 2017, 295 (1): 157- 170.
doi: 10.1007/s00396-016-3986-4
9 张帆, 管兴华, 马晓燕, 等. POSS星型聚合物对PMMA复合凝胶聚合物电解质性能的影响[J]. 高分子学报, 2015, (7): 852- 857.
9 ZHANG F , GUAN X H , MA X Y , et al. Effect of POSS star-shaped polymers on the properties of PMMA-based GPE[J]. Acta Polymeric Sinica, 2015, (7): 852- 857.
10 LIU Y , MA X , SUN K , et al. Preparation and characterization of gel polymer electrolyte based on electrospun polyhedral oligomeric silsesquioxane-poly(methyl methacrylate)8/polyvin-ylidene fluoride hybrid nanofiber membranes for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2017, 22 (4): 1- 10.
11 QIANG X , MA X Y , LI Z G , et al. Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application[J]. Colloid and Polymer Science, 2014, 292 (7): 1531- 1544.
doi: 10.1007/s00396-013-3157-9
12 DONG X , MI W , YU L , et al. Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2016, 226, 406- 414.
doi: 10.1016/j.micromeso.2016.02.006
13 LI X , ZHANG M , HE J , et al. Effects of fluorinated SiO2 nanoparticles on the thermal and electrochemical properties of PP nonwoven/PVDF-HFP composite separator for Li-ion batteries[J]. Journal of Membrane Science, 2014, 455, 368- 374.
doi: 10.1016/j.memsci.2014.01.009
14 LEE J Y , YONG M L , BHATTACHARYA B , et al. Solid polymer electrolytes based on crosslinkable polyoctahedral silsesquioxanes (POSS) for room temperature lithium polymer batteries[J]. Journal of Solid State Electrochemistry, 2010, 14 (8): 1445- 1449.
doi: 10.1007/s10008-009-0968-1
15 PARK J H , CHO J H , PARK W , et al. Close-packed SiO2/poly(methyl methacrylate) binary nanoparticles-coated polye-thylene separators for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195 (24): 8306- 8310.
doi: 10.1016/j.jpowsour.2010.06.112
16 KIM K M , HEPOWIT L R , KIM J C , et al. Enhanced separator properties by coating alumina nanoparticles with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) binder for lithium-ion batteries[J]. Korean Journal of Chemical Engin-eering, 2015, 32 (4): 717- 722.
doi: 10.1007/s11814-014-0268-z
[1] 韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
[2] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[3] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[4] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[5] 何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳. 锂离子电池厚电极结构设计的研究进展[J]. 材料工程, 2022, 50(10): 38-54.
[6] 汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
[7] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[8] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[9] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[10] 张健华, 张伟, 余章龙, 史碧梦, 杨娟玉. 锂离子电池用三维网状水系黏结剂的研究进展[J]. 材料工程, 2021, 49(6): 44-54.
[11] 滕凌虹, 曹伟伟, 朱波, 秦溶蔓. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49(2): 42-53.
[12] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[13] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[14] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[15] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn