Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 19-25    DOI: 10.11868/j.issn.1001-4381.2018.000737
  综述 本期目录 | 过刊浏览 | 高级检索 |
异质元素改性聚硅氧烷衍生SiOC陶瓷研究进展
胡智瑜, 马青松
国防科技大学 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
Research progress in SiOC ceramics derived from hetero element-modified polysiloxane
HU Zhi-yu, MA Qing-song
Science and Technology on Advanced Ceramic Fibers & Composites Laboratory, National University of Defense Technology, Changsha 410073, China
全文: PDF(1002 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 有机聚合物衍生陶瓷(PDCs)技术是陶瓷材料的主流制备技术之一。作为制备高性价比陶瓷材料的理想原料,聚硅氧烷(PSO)衍生SiOC陶瓷得到很好的发展。通过异质元素改性可进一步提高SiOC陶瓷的热稳定性和拓展功能特性,成为近年来的研究热点。本文在介绍SiOC陶瓷微观结构的基础上,分别从提高热稳定性和拓展功能特性的角度,综述了异质元素改性PSO衍生SiOC陶瓷的研究现状。结合原子局部化学环境的演化行为来揭示异质元素的作用机制以及加强改性SiOC陶瓷的应用研究是后续研究需要重点关注的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡智瑜
马青松
关键词 SiOC陶瓷聚硅氧烷异质元素改性    
Abstract:Polymer derived ceramics (PDCs) process has been one of the predominant fabrication technologies for ceramic materials. As a desirable raw material for the preparation of ceramics with high performance-to-cost ratio, polysiloxane (PSO) derived SiOC ceramics have been well developed. The SiOC ceramics derived from hetero element-modified PSO are the research hotspot of PDCs technology in recent years because the thermal stability can be enhanced and the functional properties can be expanded by the incorporation of hetero element. In this paper, microstructure of SiOC ceramics was introduced first, and then the current status of hetero element-modified PSO derived SiOC ceramics was reviewed from the viewpoints of improving thermal stability and expanding functional properties, respectively. In subsequent study, two key problems which should be paid much attention are to elucidate the operation mechanism of hetero element based on the evolution of atom local chemical environment and to enhance the application of modified SiOC ceramics.
Key wordssilicon oxycarbide ceramics    polysiloxane    hetero element    modification
收稿日期: 2018-06-21      出版日期: 2019-07-19
中图分类号:  TB321  
通讯作者: 马青松(1975-),男,研究员,博士,研究方向为先驱体转化陶瓷及其复合材料,联系地址:湖南长沙开福区德雅路109号国防科技大学空天科学学院CFC重点实验室(410073),nudtmqs1975@163.com     E-mail: nudtmqs1975@163.com
引用本文:   
胡智瑜, 马青松. 异质元素改性聚硅氧烷衍生SiOC陶瓷研究进展[J]. 材料工程, 2019, 47(7): 19-25.
HU Zhi-yu, MA Qing-song. Research progress in SiOC ceramics derived from hetero element-modified polysiloxane. Journal of Materials Engineering, 2019, 47(7): 19-25.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000737      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/19
[1] COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society, 2010, 93(7):1805-1837.
[2] ADLER P N. Overview of ARPA low-cost ceramic composites (LC3) program[C]//Proceedings of the 41st International SAMPE Symposium,[S.l.]:[s.n.],1996:524-531.
[3] MA Q S, CHEN Z H, ZHENG W W, et al. Processing and characterization of three-dimensional carbon fiber reinforced Si-O-C composites via precursor pyrolysis[J]. Materials Science and Engineering:A, 2003, 352(1/2):212-216.
[4] 马青松. 聚硅氧烷衍生陶瓷材料技术[M]. 北京:科学出版社,2018. MA Q S. Polysiloxane derived ceramic materials[M]. Beijing:Science Press, 2018.
[5] 卢国锋,乔生儒. Si-O-C界面层对C/SiC-N复合材料力学性能和热膨胀性能的影响[J]. 材料工程,2018,46(7):83-87. LU G F, QIAO S R. Influence of Si-O-C interlayer on mechanical properties and thermal expansion properties of C/SiC-N composites[J]. Journal of Materials Engineering, 2018, 46(7):83-87.
[6] 刘巧沐,黄顺洲,何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程,2018,46(10):1-8. LIU Q M, HUANG S Z, HE A J. Research progress in environmental barrier coatings of SiC ceramic matrix composites[J]. Journal of Materials Engineering, 2018, 46(10):1-8.
[7] STABLER C, ROTH F, NARISAWA M, et al. High-temper-ature creep behavior of a SiOC glass ceramic free of segregated carbon[J]. Journal of the European Ceramic Society, 2016, 36:3747-3753.
[8] PANTANO C, SINGH A, ZHANG H. Silicon oxycarbide glasses[J]. Journal of Sol-Gel Science and Technology, 1999, 14:7-25.
[9] SAHA A, RAJ R, WILLIAMSON D L. A model for the nanodomains in polymer-derived SiCO[J]. Journal of the Amer-ican Ceramic Society, 2006, 89(7):2188-2195.
[10] MORCOS R M, NAVROTSKY A, VARGA T, et al. Energetics of SixO<em>yC<em>z polymer-derived ceramics prepared under varying conditions[J]. Journal of the American Ceramic Society, 2008, 91(9):2969-2974.
[11] SAHA A, RAJ R. Crystallization maps for SiCO amorphous ceramics[J]. Journal of the American Ceramic Society, 2007, 90(2):578-583.
[12] VARGA T, NAVROTSKY A, MOATS J L, et al. Thermody-namically stable SixO<em>yC<em>z polymer-like amorphous ceramics[J]. Journal of the American Ceramic Society, 2007, 90(10):3213-3219.
[13] DIBANDJO P, GRACZYK-ZAJAC M, RIEDEL R, et al. Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics[J]. Journal of the European Ceramic Society, 2012, 32:2495-2503.
[14] COLOMBO P, BERNARDO E, PARCIANELLO G. Multifunc-tional advanced ceramics from preceramic polymers and nano-sized active fillers[J]. Journal of the European Ceramic Society, 2013, 33:453-469.
[15] MA Q S, CHEN Z H, ZHENG W W, et al. Processing and characterization of particles reinforced Si-O-C composites via pyrolysis of polysiloxane with SiC or/and Al fillers[J]. Ceramics International, 2005, 31(8):1045-1051.
[16] LATOURNERIE J, DEMPSEY P, BAHLOUL D H, et al. Silicon oxycarbide glasses:part Ⅰ-thermochemical stability[J]. Journal of the American Ceramic Society, 2006, 89(5):1485-1491.
[17] XU T H, MA Q S, CHEN Z H. High-temperature behavior of silicon oxycarbide glasses in air environment[J]. Ceramics International, 2011, 37(7):2555-2559.
[18] XU T H, MA Q S, CHEN Z H. The effect of environment pressure on high temperature stability of silicon oxycarbide glasses derived from polysiloxane[J]. Materials Letters, 2011, 65(11):1538-1541.
[19] XU T H, MA Q S, CHEN Z H. High-temperature behavior of Cf/SiOC composites in inert atmosphere[J]. Materials Science and Engineering:A, 2011, 530:266-270.
[20] XU T H, MA Q S, CHEN Z H. Mechanical property and microstructure evolutions of Cf/SiOC composites with increasing annealing temperature in reduced pressure environment[J]. Ceramics International, 2012, 38(1):605-611.
[21] ZHANG X H, LIU C, HONG C Q, et al. Sol-gel-derived SiBOC ceramics with highly graphitized free carbon[J]. Ceramics International, 2015, 41:15292-15296.
[22] TAVAKOLI A H, CAMPOSTRINI R, GERVAIS C, et al. Energetics and structure of polymer-derived Si-(B-)O-C glasses:effect of the boron content and pyrolysis temperature[J]. Journal of the American Ceramic Society, 2014, 97(1):303-309.
[23] SCHIAVON M A, GERVAIS C, BABONNEAU F, et al. Crystallization behavior of novel silicon boron oxycarbide glasses[J]. Journal of the American Ceramic Society, 2004, 87(2):203-208.
[24] BAI H W, WEN G, HUANG X X, et al. Synthesis and structural characterization of SiBOC ceramic fibers derived from single-source polyborosiloxane[J]. Journal of the European Ceramic Society, 2011, 31:931-940.
[25] WOOTTON A M, RAPPENSBERGER M, LEWIS M H, et al. Structural properties of multi-component silicon oxycarbide glasses derived from metal alkoxide precursors[J]. Journal of Non-crystalline Solids, 1996, 204:217-227.
[26] ISCHENKO V, PIPPEL E, WOLTERSDORF J, et al. Influ-ence of the precursor cross-linking route on the thermal stability of Si-B-C-O ceramics[J]. Chemistry of Materials, 2008, 20(22):7148-7156.
[27] HARSHE R, BALAN C, RIEDEL R. Amorphous Si(Al)OC ceramic from polysiloxanes:bulk ceramic processing, crystall-ization behavior and applications[J]. Journal of the European Ceramic Society, 2004, 24:3471-3482.
[28] XU T H, MA Q S, CHEN Z H. The effect of aluminum additive on structure evolution of silicon oxycarbide derived from polysiloxane[J]. Materials Letters, 2011, 65(3):433-435.
[29] XU T H, MA Q S, WANG Y H, et al. High-temperature behavior of Al-doped polymer-derived SiAlOC glasses in air environment[J]. Ceramics International, 2014, 40(9):13787-13792.
[30] MA Q S, XU T H. High-temperature evolution behavior of polymer-derived SiAlOC ceramics under inert atmosphere[J]. Journal of Alloys and Compounds, 2017, 723:17-20.
[31] XU T H, MA Q S, CHEN Z H. Structural evolution of Al-doped SiAlOC polymer in inert atmosphere[J]. Materials Letters, 2012, 66(1):364-366.
[32] IONESCU E, LINCK C, FASEL C, et al. Polymer-derived SiOC/ZrO2 nanocomposites with excellent high-temperature sta-bility[J]. Journal of the American Ceramic Society, 2010, 93(1):241-250.
[33] XU T H, MA Q S, DUAN L Q. Effect of zirconium additive on structure evolution of silicon oxycarbide derived from polysiloxane[J]. Rare Metal Materials and Engineering, 2012, 41(suppl 3):15-17.
[34] LIU C, PAN R Q, HONG C Q, et al. Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer-derived ceramics[J]. Journal of the European Ceramic Society, 2016, 36:395-402.
[35] DIRÈ S, CECCATO R, GIALANELLA S, et al. Thermal evolution and crystallization of polydimethylsiloxane-zirconia nanocomposites prepared by the sol-gel method[J]. Journal of the European Ceramic Society, 1999, 19(16):2849-2858.
[36] IONESCU E, PAPENDORF B, KLEEBE H J, et al. Polymer-derived silicon oxycarbide/hafnia ceramic nanocomposites. Part Ⅱ:stability toward decomposition and microstructure evolution at T>1000℃[J]. Journal of the American Ceramic Society, 2010, 93(6):1783-1789.
[37] KLEEBE H J, NONNENMACHER K, IONESCU E, et al. Decomposition-coarsening model of SiOC/HfO2 ceramic nanoco-mposites upon isothermal anneal at 1300℃[J]. Journal of the American Ceramic Society, 2012, 95(7):2290-2297.
[38] UMICEVIC A B, CEKICB D, BELOŠEVIC-C CCAVOR J N, et al. Evolution of the local structure at Hf sites in SiHfOC upon ceramization of a hafnium-alkoxide-modified polysilsesquioxane:a perturbed angular correlation study[J]. Journal of the European Ceramic Society, 2015, 35:29-35.
[39] NONNENMACHER K, KLEEBE H J, ROHRER J, et al. Carbon mobility in SiOC/HfO2 ceramic nanocomposites[J]. Journal of the American Ceramic Society, 2013, 96(7):2058-2060.
[40] IONESCU E, PAPENDORF B, KLEEBE H J, et al. Polymer-derived silicon oxycarbide/hafnia ceramic nanocomposites. Part I:phase and microstructure evolution during the ceramization process[J]. Journal of the American Ceramic Society, 2010, 93(6):1774-1782.
[41] KARAKUSCU A, GUIDER R, PAVESI L, et al. Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films[J]. Thin Solid Films, 2011, 519:3822-3826.
[42] SORARÙ G D, ZHANG Y J, FERRARI M, et al. Novel Er-doped SiC/SiO2 nanocomposites:synthesis via polymer pyrol-ysis and their optical characterization[J]. Journal of the European Ceramic Society, 2005, 25(2/3):277-281.
[43] HOJAMBERDIEV M, PRASAD R M, FASEL C, et al. Single-source-precursor synthesis of soft magnetic Fe3Si- and Fe5Si3-containing SiOC ceramic nanocomposites[J]. Journal of the European Ceramic Society, 2013, 33:2465-2472.
[44] CAO Y J, GAO Y, ZHAO R, et al. Coupling effect of temper-ature and stress on the electronic behavior of amorphous SiAlCO[J]. Journal of the American Ceramic Society, 2016, 99(6):1881-1884.
[45] CAO Y J, YANG X P, ZHAO R, et al. Giant piezoresistivity in polymer-derived amorphous SiAlCO ceramics[J]. Journal of Materials Science, 2016, 51:5646-5650.
[46] CAO Y J, YANG X P, AN L N. Electric conductivity and microstructure evolution of polymer-derived SiAlCO ceramics[J]. Ceramics International, 2016, 42:4033-4038.
[47] DUAN W Y, YIN X W, LUO C J, et al. Microwave-absorption properties of SiOC ceramics derived from novel hyperbranched ferrocene-containing polysiloxane[J]. Journal of the European Ceramic Society, 2017, 37:2021-2030.
[48] DUAN W Y, YIN X W, LI Q, et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic[J]. Journal of the European Ceramic Society, 2014, 34:257-266.
[49] PEREIRA J L, GODOY N V, RIBEIRO E S, et al. Synthesis and structural characterization of hybrid polymeric networks-derived-SiCxO<em>y in the presence and absence of cobalt acetate[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114:11-21.
[50] SEGATELLI M G, PIRES A T N, YOSHIDA I V P. Synthesis and structural characterization of carbon-rich SiCxO<em>y derived from a Ni-containing hybrid polymer[J]. Journal of the European Ceramic Society, 2008, 28:2247-2257.
[51] SCHEFFLER M, GREIL P, BERGER A, et al. Nickel-cataly-zed in situ formation of carbon nanotubes and turbostratic carbon in polymer-derived ceramics[J]. Materials Chemistry and Physics, 2004, 84:131-139.
[52] LU K. Porous and high surface area silicon oxycarbide-based materials-a review[J]. Materials Science and Engineering:R, 2015, 97:23-49.
[53] WÓJCIK-BANIA M, KROWIAK A, STRZEZIK J, et al. Pt supported on cross-linked poly(vinylsiloxanes) and SiCO ceramics-new materials for catalytic applications[J]. Materials & Design, 2016, 96:171-179.
[54] IONESCU E, TERZILGLU C, LINCK C, et al. Thermody-namic control of phase composition and crystallization of metal-modified silicon oxycarbides[J]. Journal of the American Ceramic Society, 2013, 96(6):1899-1903.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 杜歌, 魏莉, 刘自双, 武继民, 陈子浩, 田丰. γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响[J]. 材料工程, 2020, 48(5): 106-111.
[3] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[4] 张冰清, 杨小波, 孙志强, 苗镇江, 王华栋, 吕毅. 纤维增强石英复合材料的改性处理及性能研究[J]. 材料工程, 2020, 48(1): 48-53.
[5] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[6] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[7] 赵亮, 李晓霞, 郭宇翔, 马德跃. 聚苯胺及其伪装应用研究进展[J]. 材料工程, 2019, 47(3): 42-49.
[8] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[9] 袁颂东, 杨灿星, 江国栋, 熊剑, 艾青, 黄仁忠. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47(10): 1-9.
[10] 刘红娟, 吴仁杰, 谢水波, 刘迎九. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32.
[11] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[12] 杨唐俊, 袁荞龙, 黄发荣. 石英纤维增强含硅芳炔树脂复合材料的界面增强[J]. 材料工程, 2018, 46(8): 148-155.
[13] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[14] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 氧化石墨烯表面稀土改性机理[J]. 材料工程, 2018, 46(5): 29-35.
[15] 徐腾威, 甘国友, 严继康, 李震宇, 郭根生, 易健宏. CeO2掺杂对Pb0.92Sr0.06Ba0.02-(Sb2/3Mn1/3)0.05Zr0.48Ti0.47O3基压电陶瓷相结构及性能的影响[J]. 材料工程, 2018, 46(5): 139-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn