Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 21-28    DOI: 10.11868/j.issn.1001-4381.2018.000738
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
低温一步制备氧化石墨烯及微波还原研究
宇文超1,2,3, 刘秉国1,2,3, 张立波1,2,3, 郭胜惠1,2,3, 彭金辉1,2,3
1. 昆明理工大学 冶金与能源工程学院, 昆明 650093;
2. 云南省特种冶金重点实验室, 昆明 650093;
3. 昆明理工大学 非常规冶金省部共建教育部重点实验室, 昆明 650093
One step synthesis of graphene oxide under low-temperature and its microwave reduction
YUWEN Chao1,2,3, LIU Bing-guo1,2,3, ZHANG Li-bo1,2,3, GUO Sheng-hui1,2,3, PENG Jin-hui1,2,3
1. Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming 650093, China;
3. The Key Laboratory of Unconventional Metallurgy(Ministry of Education), Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(3793 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以天然鳞片石墨为原料,通过低温一步氧化制备氧化石墨烯,经微波热还原得到低缺陷的还原氧化石墨烯。讨论了低温氧化过程中氧化剂用量、氧化时间对氧化石墨烯层间距、氧化程度的影响。结果表明:在高锰酸钾与天然鳞片石墨的质量比为1:3,氧化温度为0℃,氧化时间为48h的条件下,制备出碳氧原子比为1.98、高C-O结构、低缺陷结构(IDIG=0.63)的氧化石墨烯,避免了Hummers制备过程中由于CO2的形成导致六元环断裂以及碳原子的缺失而使得氧化石墨烯的缺陷增加;经微波热还原后,得到的还原氧化石墨烯的两点平均缺陷距离LD=12nm,缺陷密度nD=2.21×1011cm-2IDIG仅为0.85(ΓG=32.1cm-1),制备出低缺陷的还原氧化石墨烯。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宇文超
刘秉国
张立波
郭胜惠
彭金辉
关键词 氧化石墨烯缺陷低温微波    
Abstract:The graphene oxide was prepared via one step under low-temperature with natural flake graphite as raw material. Factors affecting oxidation degree and layer spacing of graphene oxide were discussed in the process of low-temperature oxidation, such as the dosage of oxidant and oxidation time in system. The results indicate that high C-O bond and low defect structure (ID:IG=0.63) graphene oxide with the carbon and oxygen atom ratio of 1.98 can be prepared in the condition of the potassium permanganate with natural flake graphite mass ratio of 1:3, oxidation temperature of 0℃, oxidation time of 48h.This way avoids the increase of graphene oxide defects in the process of Hummers preparation due to the formation of CO2, which leads to the hexagon fracture and the absence of carbon atoms. After microwave reduction, the reduced graphene oxide with low defect is obtained, which the distance between defects(LD)is 12nm,the defect density(nD) is 2.21×1011cm-2 and the ratio of ID:IG is only 0.85 (ΓG=32.1cm-1).
Key wordsgraphene oxide    defect    low-temperature    microwave
收稿日期: 2018-06-19      出版日期: 2019-09-18
中图分类号:  TB320  
通讯作者: 刘秉国(1973-),男,教授,从事微波冶金新技术和新工艺的研究,联系地址:云南省昆明市五华区昆明理工大学冶金与能源工程学院(650093),E-mail:bingoliu@126.com     E-mail: bingoliu@126.com
引用本文:   
宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
YUWEN Chao, LIU Bing-guo, ZHANG Li-bo, GUO Sheng-hui, PENG Jin-hui. One step synthesis of graphene oxide under low-temperature and its microwave reduction. Journal of Materials Engineering, 2019, 47(9): 21-28.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000738      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/21
[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[2] GÓMEZ N C,WEITZ R T,BITTNER A M,et al. Electronic transport properties of individual chemically reduced graphene oxide sheets[J]. Nano Letters,2007,7(11):3499-3503.
[3] PRASHER R. Graphene spreads the heat[J]. Science,2010,328(5975):185-186.
[4] NOVOSELOV K S,FALKO V I,COLOMBO L,et al. A roadmap for graphene[J]. Nature,2012,490(7419):192-200.
[5] ZHU Y, MURAL S,CAI W,et al. Graphene-based materials:graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924.
[6] GEIM A K. Graphene:status and prospects[J]. Science,2009,324(5934):1530-1534.
[7] TUNG V C,ALLEN M J,YANG Y,et al. High-throughput solution processing of large-scale graphene[J]. Nature Nano-technology,2009,4(1):25-29.
[8] HE D,SHEN L,ZHANG X,et al. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions[J]. AICHE Journal,2014,60(8):2757-2764.
[9] DIMIEV A,KOSYNKIN D V,ALEMANY L B,et al. Pristine graphite oxide[J]. Journal American Chemical Society,2012,134(5):2815-2822.
[10] EIGLER S,ENZELBERGER H M,GRIMM S,et al. Wet chemical synthesis of graphene[J]. Advanced Materials,2013,25(26):3583-3587.
[11] EIGLER S,DOTZER C, HIESCH A,et al. Visualization of defect densities in reduced graphene oxide[J]. Carbon,2012,50(10):3666-3673.
[12] HASHIMOTO A,SUENAGAK,GLOTER A,et al. Direct evidence for atomic defects in graphene layers[J]. Nature,2004, 430(7002):870-873.
[13] PEI S, CENG H M. The reduction of graphene oxide[J]. Carbon,2012,50(9):3210-3218.
[14] MAO S,PU H,CHEN J. Graphene oxide and its reduction:modeling and experimental progress[J]. Cheminform,2012,43(22):2643-2662.
[15] EIGLER S,DOTZER C,HIRSCH A,et al. Formation and decomposition of CO2 intercalated graphene oxide[J]. Chemistry of Materials,2012,24(7):1276-1282.
[16] FERRARI A C,ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B Condensed Matter,2000,61(20):14095-14107.
[17] YU V B,RYBAKOV K I,SEMENOV V E. High-temperature microwave processing of materials[J]. Journal of Physics D Applied Physics,2001,34(13):55-75.
[18] JU H M,HUH S H,CHOI S H,et al. Structures of thermally and chemically reduced graphene[J]. Materials Letters,2010,64(3):357-360.
[19] MOON I K,LEE J,RUOFF R S,et al. Reduced graphene oxide by chemical graphitization[J]. Nature Communications,2010,1(6):73-79.
[20] YAMAGUCHI H,EDA G,MATTEVI C,et al. Highly uniform 300mm wafer-scale deposition of single and multilayered che-mically derived graphene thin films[J]. ACS Nano,2010,4(1):524-528.
[21] VORIY D,YANG J, KUPFERBER J,et al. High-quality graphene via microwave reduction of solution-exfoliated graph-ene oxide[J]. Science,2016,353(6303):1413-1416.
[22] 王培草,孙红娟,彭同江,等. 氧化程度对氧化石墨烯a-b轴结构及电学性能的影响[J]. 无机化学学报,2015,31(2):275-281. WANG P C,SUN H J,PENG T J,et al. Influence of oxidation degrees on the a-b structures and conductivity of graphene oxide sample[J]. Chinese Journal of Inorganic Chemistry,2015,31(2):275-281.
[23] SZABÓ T,TOMBÁCA E,ILLÉS E,et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon,2006,44(3):537-545.
[24] BASKO D M. Theory of resonant multiphonon Raman scattering in graphene[J]. Physics,2008,78(12):1884-1898.
[25] FERRARI A C,ROBERTSON J. Resonant Raman spectroscopy of disordered,amorphous,and diamondlike carbon[J]. Physical Review B Condensed Matter,2001,64(7):075414.
[26] MARTINS F E H,MOUTINBO M V O,STAVALE F,et al. Evolution of the Raman spectra from single-,few-,and many-layer graphene with increasing disorder[J]. Physical Review B,2010,82(12):4079-4085.
[27] CHEN W,YAN L,BANGGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon,2010,48(4):1146-1152.
[28] NOVOSELOV K S,JIANG D,SCHEDIN F,et al. Two-dimensional atomic crystals[J]. Proceeding of the National Academy Sciences of the United States of America,2005,102(30):10451-10455.
[1] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[2] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[3] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[4] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[5] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[6] 刘承林, 苏海军, 张军, 刘林, 傅恒志. 静磁场对定向凝固镍基高温合金组织影响的研究进展[J]. 材料工程, 2019, 47(9): 13-20.
[7] 赵梓钧, 杨新岐, 李胜利, 李冬晓. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47(9): 84-92.
[8] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[9] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[10] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[11] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[12] 刘红娟, 吴仁杰, 谢水波, 刘迎九. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32.
[13] 占丽娜, 刘耀, 李昊, 刘绍军. 流延成型制备MoO3掺杂BiSmMoO6微波陶瓷基片的工艺研究[J]. 材料工程, 2019, 47(10): 120-125.
[14] 李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
[15] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn