Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 92-97    DOI: 10.11868/j.issn.1001-4381.2018.000746
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
预变形对2050铝锂合金晶粒细化及超塑性的影响
叶凌英1,2,3, 孙泉1,2,3, 李红萍1,2,3, 刘胜胆1,2,3, 张新明1,2,3
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 中南大学 有色金属材料科学与工程教育部重点实验室, 长沙 410083;
3. 中南大学 有色金属先进结构材料与制造协同创新中心, 长沙 410083
Effects of pre-deformation on grain refinement and superplasticity of 2050 Al-Li alloy
YE Ling-ying1,2,3, SUN Quan1,2,3, LI Hong-ping1,2,3, LIU Sheng-dan1,2,3, ZHANG Xin-ming1,2,3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering(Ministry of Education), Central South University, Changsha 410083, China;
3. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
全文: PDF(3541 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过形变热处理工艺制备2050铝锂合金细晶板材,采用光学显微镜、扫描电镜等研究预变形对第二相分布、晶粒组织及板材超塑性的影响。结果表明:采用预变形后,高温过时效过程中板材晶内形成大量亚晶,大量的亚晶界促进了TB相的析出同时提高了粗化速率,显著增加了晶内TB相的尺寸,使得有效激发再结晶形核第二相粒子体积分数由0.92%提高至3.28%。同时与未预变形板材相比,板材中心层平均晶粒尺寸由12.59μm降低至9.59μm,表层平均晶粒尺寸由10.79μm降低至8.60μm,晶粒细化效果得到明显改善,超塑性变形能力显著提升,在490℃,2×10-4s-1的变形条件下,伸长率由230%提高至470%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶凌英
孙泉
李红萍
刘胜胆
张新明
关键词 2050铝锂合金晶粒细化形变热处理粒子激发形核超塑性    
Abstract:Fine-grain 2050 Al-Li alloy sheets were prepared by thermomechanical treatment processing(TMTP). The effects of pre-deformation on second phase distribution, grain structure and superpl-asticity of alloy sheets were studied by optical microscope and scanning electron microscope. The results show that after pre-deformation, a large amount of subgrains are formed in the plate during high temperature overaging. A large number of subgrain boundaries promote the precipitation of TB phase and increase the roughening rate, which significantly increases the size of intragranular TB phase. The volume fraction of second phase particles that effectively stimulates recrystallization nucleation increases from 0.92% to 3.28%. Compared with the non-predeformed sheets, the average grain size of the center layer of the sheets is reduced from 12.59μm to 9.59μm, the average grain size of the surface layer is reduced from 10.79μm to 8.60μm, the grain refinement effect is obviously improved, the superplastic deformation ability is significantly improved. The elongation of superpla-stic deformation increases from 230% to 470% under the condition of 490℃ and 2×10-4s-1.
Key words2050 Al-Li alloy    grain refinement    thermomechanical treatment    particle-stimulated nuclea-tion    superplasticity
收稿日期: 2018-06-21      出版日期: 2019-12-17
中图分类号:  TG146.2  
基金资助: 
通讯作者: 刘胜胆(1980-),男,教授,博士,主要从事高性能轻合金材料研究,联系地址:湖南省长沙市岳麓区中南大学校本部特冶楼415(410083),E-mail:lsd_csu@csu.edu.cn     E-mail: lsd_csu@csu.edu.cn
引用本文:   
叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
YE Ling-ying, SUN Quan, LI Hong-ping, LIU Sheng-dan, ZHANG Xin-ming. Effects of pre-deformation on grain refinement and superplasticity of 2050 Al-Li alloy. Journal of Materials Engineering, 2019, 47(12): 92-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000746      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/92
[1] 钟警. 2050铝合金耐损伤性能的研究[D]. 长沙:中南大学, 2013. ZHONG J. Damage resistance behavior of 2050 aluminum alloy[D]. Changsha:Central South University,2013.
[2] LEQUEU P, SMITH K P, DANIÉLOU A. Aluminum-copper-lithium alloy 2050 developed for medium to thick plate[J]. Journal of Materials Engineering and Performance, 2010, 19(6):841-847.
[3] RIOJA R J, LIU J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9):3325-3337.
[4] EL-ATY A A,XU Y,GUO X Z,et al. Strengthening mechanisms,deformation behavior,and anisotropic mechanical properties of Al-Li alloys:a review[J].Journal of Advanced Research,2018,10:49-67.
[5] 张宁,王耀奇,侯红亮,等. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4):27-33. ZHANG N, WANG Y Q, HOU H L, et al. Superplastic deformation behavior of 7B04 Al alloy[J]. Journal of Materials Engineering, 2017, 45(4):27-33.
[6] 陈敏,叶凌英,孙大翔,等. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3):112-118. CHEN M,YE L Y,SUN D X,et al. Effect of heating rate on grain structure and superplasticity of 7B04 aluminum alloy sheets[J]. Journal of Materials Engineering, 2017, 45(3):112-118.
[7] 吴秀亮,刘铭,李国爱,等. 铝锂合金热机械处理研究进展[J]. 航空材料学报, 2016, 36(5):82-89. WU X L,LIU M,LI G A,et al. Research and progress of thermomechanical treatment of Al-Li alloys[J]. Journal of Aeronautical Materials, 2016, 36(5):82-89.
[8] 张新明,刘颖维,叶凌英,等. 预变形和过时效对AA2195铝锂合金晶粒的细化[J]. 中国有色金属学报, 2009, 19(4):633-638. ZHANG X M,LIU Y W,YE L Y,et al. Grain refinement of AA2195 Al-Li alloy by pre-deformation and overaging[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(4):633-638.
[9] 叶凌英,张新明,刘颖维,等. 温度对01420铝锂合金轧制开裂及晶粒细化的影响[J]. 稀有金属材料与工程, 2008, 37(8):1431-1435. YE L Y,ZHANG X M,LIU Y W,et al. Effects of temperatures on rolling failure and grain refinement of 01420 Al-Li alloy[J]. Rare Metal Materials and Engineering, 2008, 37(8):1431-1435.
[10] 王瑞琴,郑子樵,陈圆圆,等. Ag,Mg合金化对Al-Cu-Li合金时效特性和显微组织的影响[J]. 稀有金属材料与工程, 2009, 38(4):622-626. WANG R Q, ZHENG Z Q, CHEN Y Y, et al. Effects of Ag, Mg micro-alloying on aging characteristics and microstructure of Al-Cu-Li alloy[J]. Rare Metal Materials and Engineering, 2009, 38(4):622-626.
[11] 叶志豪,朱瑞华,李劲风,等. 一种2050铝锂合金薄板的微观组织与力学性能[J]. 稀有金属材料与工程, 2018, 47(4):1192-1198. YE Z H, ZHU R H, LI J F, et al. Microstructure and mechanical properties of a 2050 Al-Li alloy sheet[J]. Rare Metal Materials and Engineering, 2018, 47(4):1192-1198.
[12] PRASAD N E,GOKHALE A A,WANHILL R J H. Aluminum-lithium alloys:processing, properties, and applications[M]. Boston,US:Butterworth-Heinemann, 2013.
[13] WANG S C, STARINK M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys[J]. International Materials Reviews, 2005, 50(4):193-215.
[14] 潘金生,仝健民,田民波. 材料科学基础[M]. 修订版.北京:清华大学出版社, 2011. PAN J S,TONG J M,TIAN M B. Fundamentals of materials science[M]. Rev.ed. Beijing:Tsinghua University Press, 2011.
[15] CORTI C W, COTTERILL P, FITZPATRICK G A. The evaluation of the interparticle spacing in dispersion alloys[J]. Metallurgical Reviews, 1974, 19(1):77-88.
[16] WERT J A, PATON N E, HAMILTON C H, et al. Grain refinement in 7075 aluminum by thermomechanical processing[J]. Metallurgical Transactions A, 1981, 12(7):1267-1276.
[17] CLARKE A P,HUMPHREYS J F,BATE P S. Lattice rotations at large second-phase particles in polycrystalline aluminium[J]. Materials Science Forum, 2003, 426/432:399-404.
[1] 袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
[2] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[3] 叶凌英, 杨栋, 李红萍, 张新明, 廖荣跃. 5A90铝锂合金超塑性变形机理的定量研究[J]. 材料工程, 2019, 47(11): 163-170.
[4] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[5] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[6] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[7] 陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
[8] 李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
[9] 韩小伟, 张瑞英, 王鹏. Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响[J]. 材料工程, 2017, 45(10): 65-70.
[10] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[11] 周士猛, 程兴旺, 张由景, 蒋雯, 王梦, 汪佩, 才鸿年. 新型超高强度钢的高温形变热处理[J]. 材料工程, 2016, 44(5): 37-41.
[12] 王明华, 杜军. 微量Fe对Mg-3%Al合金碳质孕育衰退的影响[J]. 材料工程, 2016, 44(5): 54-58.
[13] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[14] 唐群华, 廖晓舟, 戴品强. Al0.3CoCrFeNi高熵合金高压扭转过程中的组织结构演变[J]. 材料工程, 2015, 43(12): 45-51.
[15] 黄元春, 杜志勇, 肖政兵, 颜徐宇. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43(12): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn