Effects of pre-deformation on grain refinement and superplasticity of 2050 Al-Li alloy
YE Ling-ying1,2,3, SUN Quan1,2,3, LI Hong-ping1,2,3, LIU Sheng-dan1,2,3, ZHANG Xin-ming1,2,3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering(Ministry of Education), Central South University, Changsha 410083, China;
3. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
Abstract:Fine-grain 2050 Al-Li alloy sheets were prepared by thermomechanical treatment processing(TMTP). The effects of pre-deformation on second phase distribution, grain structure and superpl-asticity of alloy sheets were studied by optical microscope and scanning electron microscope. The results show that after pre-deformation, a large amount of subgrains are formed in the plate during high temperature overaging. A large number of subgrain boundaries promote the precipitation of TB phase and increase the roughening rate, which significantly increases the size of intragranular TB phase. The volume fraction of second phase particles that effectively stimulates recrystallization nucleation increases from 0.92% to 3.28%. Compared with the non-predeformed sheets, the average grain size of the center layer of the sheets is reduced from 12.59μm to 9.59μm, the average grain size of the surface layer is reduced from 10.79μm to 8.60μm, the grain refinement effect is obviously improved, the superplastic deformation ability is significantly improved. The elongation of superpla-stic deformation increases from 230% to 470% under the condition of 490℃ and 2×10-4s-1.
叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
YE Ling-ying, SUN Quan, LI Hong-ping, LIU Sheng-dan, ZHANG Xin-ming. Effects of pre-deformation on grain refinement and superplasticity of 2050 Al-Li alloy. Journal of Materials Engineering, 2019, 47(12): 92-97.
[1] 钟警. 2050铝合金耐损伤性能的研究[D]. 长沙:中南大学, 2013. ZHONG J. Damage resistance behavior of 2050 aluminum alloy[D]. Changsha:Central South University,2013.
[2] LEQUEU P, SMITH K P, DANIÉLOU A. Aluminum-copper-lithium alloy 2050 developed for medium to thick plate[J]. Journal of Materials Engineering and Performance, 2010, 19(6):841-847.
[3] RIOJA R J, LIU J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9):3325-3337.
[4] EL-ATY A A,XU Y,GUO X Z,et al. Strengthening mechanisms,deformation behavior,and anisotropic mechanical properties of Al-Li alloys:a review[J].Journal of Advanced Research,2018,10:49-67.
[5] 张宁,王耀奇,侯红亮,等. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4):27-33. ZHANG N, WANG Y Q, HOU H L, et al. Superplastic deformation behavior of 7B04 Al alloy[J]. Journal of Materials Engineering, 2017, 45(4):27-33.
[6] 陈敏,叶凌英,孙大翔,等. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3):112-118. CHEN M,YE L Y,SUN D X,et al. Effect of heating rate on grain structure and superplasticity of 7B04 aluminum alloy sheets[J]. Journal of Materials Engineering, 2017, 45(3):112-118.
[7] 吴秀亮,刘铭,李国爱,等. 铝锂合金热机械处理研究进展[J]. 航空材料学报, 2016, 36(5):82-89. WU X L,LIU M,LI G A,et al. Research and progress of thermomechanical treatment of Al-Li alloys[J]. Journal of Aeronautical Materials, 2016, 36(5):82-89.
[8] 张新明,刘颖维,叶凌英,等. 预变形和过时效对AA2195铝锂合金晶粒的细化[J]. 中国有色金属学报, 2009, 19(4):633-638. ZHANG X M,LIU Y W,YE L Y,et al. Grain refinement of AA2195 Al-Li alloy by pre-deformation and overaging[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(4):633-638.
[9] 叶凌英,张新明,刘颖维,等. 温度对01420铝锂合金轧制开裂及晶粒细化的影响[J]. 稀有金属材料与工程, 2008, 37(8):1431-1435. YE L Y,ZHANG X M,LIU Y W,et al. Effects of temperatures on rolling failure and grain refinement of 01420 Al-Li alloy[J]. Rare Metal Materials and Engineering, 2008, 37(8):1431-1435.
[10] 王瑞琴,郑子樵,陈圆圆,等. Ag,Mg合金化对Al-Cu-Li合金时效特性和显微组织的影响[J]. 稀有金属材料与工程, 2009, 38(4):622-626. WANG R Q, ZHENG Z Q, CHEN Y Y, et al. Effects of Ag, Mg micro-alloying on aging characteristics and microstructure of Al-Cu-Li alloy[J]. Rare Metal Materials and Engineering, 2009, 38(4):622-626.
[11] 叶志豪,朱瑞华,李劲风,等. 一种2050铝锂合金薄板的微观组织与力学性能[J]. 稀有金属材料与工程, 2018, 47(4):1192-1198. YE Z H, ZHU R H, LI J F, et al. Microstructure and mechanical properties of a 2050 Al-Li alloy sheet[J]. Rare Metal Materials and Engineering, 2018, 47(4):1192-1198.
[12] PRASAD N E,GOKHALE A A,WANHILL R J H. Aluminum-lithium alloys:processing, properties, and applications[M]. Boston,US:Butterworth-Heinemann, 2013.
[13] WANG S C, STARINK M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys[J]. International Materials Reviews, 2005, 50(4):193-215.
[14] 潘金生,仝健民,田民波. 材料科学基础[M]. 修订版.北京:清华大学出版社, 2011. PAN J S,TONG J M,TIAN M B. Fundamentals of materials science[M]. Rev.ed. Beijing:Tsinghua University Press, 2011.
[15] CORTI C W, COTTERILL P, FITZPATRICK G A. The evaluation of the interparticle spacing in dispersion alloys[J]. Metallurgical Reviews, 1974, 19(1):77-88.
[16] WERT J A, PATON N E, HAMILTON C H, et al. Grain refinement in 7075 aluminum by thermomechanical processing[J]. Metallurgical Transactions A, 1981, 12(7):1267-1276.
[17] CLARKE A P,HUMPHREYS J F,BATE P S. Lattice rotations at large second-phase particles in polycrystalline aluminium[J]. Materials Science Forum, 2003, 426/432:399-404.