Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 160-166    DOI: 10.11868/j.issn.1001-4381.2018.000781
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PVD薄膜传感器裂纹检测概率测定与分析
刘凯1, 崔荣洪2, 侯波3, 何宇廷2, 牛欢1
1. 中国人民解放军 95606 部队, 四川 泸州 646000;
2. 空军工程大学 航空工程学院, 西安 710038;
3. 陆军航空兵研究所, 北京 101121
Estimation and analysis of probability of PVD film sensor crack detection
LIU Kai1, CUI Rong-hong2, HOU Bo3, HE Yu-ting2, NIU Huan1
1. The Chinese People's Liberation Army Unit 95606, Luzhou 646000, Sichuan, China;
2. College of Aeronautics Engineering, Air Force Engineering University, Xi'an 710038, China;
3. Army Aviation Research Institute, Beijing 101121, China
全文: PDF(7779 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为利用PVD(physical vapor deposition)薄膜传感器对金属结构裂纹的检测能力进行定量化表征,首先采用正交实验优化后适用于LY12-CZ铝合金的工艺参数,在3组中心孔板实验件上分别制备币状、1mm宽同心双环状、0.5mm宽同心三环状3种不同形状的PVD薄膜传感器。随后,在实验室条件下开展疲劳裂纹在线监测实验,对比分析PVD薄膜传感器电位输出信号和显微镜观测结果。最后,采用改进的裂纹尺寸间隔法和二项分布检测模型绘制PVD薄膜传感器总体与不同形状的裂纹检测概率曲线。PVD薄膜传感器在95%置信水平下,对长度大于0.99mm的裂纹检出概率可达93.56%;相比于币状薄膜传感器,同心环状薄膜传感器对小于0.5mm的裂纹更为敏感,且传感器通道宽度越细,对小尺寸裂纹的检测概率越高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凯
崔荣洪
侯波
何宇廷
牛欢
关键词 金属结构疲劳裂纹检测概率薄膜    
Abstract:In order to quantitatively characterize the ability of PVD(physical vapor deposition) film sensors to detect cracks in metallic structures, the process parameters applied to LY12-CZ aluminium alloys were first optimized using orthogonal tests, and coin shape, 1mm concentric dual ring shape, 0.5mm concentric tricyclic shape PVD film sensors were prepared on three groups of specimen with central hole using these parameters. Subsequently, the on-line monitoring experiment of fatigue cracks was carried out under laboratory conditions, the potential output signals of the PVD film sensors and microscope observations were compared and analysed. Finally, the probability of detection curves of all kinds of PVD thin-film sensors and PVD film sensor in different shapes were plotted separately using the improved crack size separation method and binomial distribution detection model. PVD thin-film sensors have 93.56% detection probability for cracks with length greater than 0.99mm at 95% confidence level. Compared to coin-shaped thin-film sensors, concentric ring shape film sensors are more sensitive to cracks smaller than 0.5mm, and the sensors with finer channel width have the higher probability of detection on small size cracks.
Key wordsmetal structure    fatigue crack    probability of detection    thin film
收稿日期: 2018-06-29      出版日期: 2019-09-18
中图分类号:  V215.6  
  TP212.1  
基金资助: 
通讯作者: 刘凯(1993-),男,助理工程师,硕士,研究方向为结构健康监控,联系地址:四川泸州中国人民解放军95606部队(646000),E-mail:LiuKai916@yeah.net     E-mail: LiuKai916@yeah.net
引用本文:   
刘凯, 崔荣洪, 侯波, 何宇廷, 牛欢. PVD薄膜传感器裂纹检测概率测定与分析[J]. 材料工程, 2019, 47(9): 160-166.
LIU Kai, CUI Rong-hong, HOU Bo, HE Yu-ting, NIU Huan. Estimation and analysis of probability of PVD film sensor crack detection. Journal of Materials Engineering, 2019, 47(9): 160-166.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000781      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/160
[1] HOU B, HE Y T, CUI R H, et al. Crack monitoring method Cu coating sensor and electrical potential technique for metal structure[J]. Chinese Journal of Aeronautics, 2015, 28(3):932-938.
[2] 刘凯,崔荣洪,侯波,等. PVD薄膜传感器强化结构裂纹监测可行性[J]. 西安交通大学学报, 2018, 52(7):139-145. LIU K, CUI R H, HOU B, et al. Feasibility of strengthened structure crack monitoring using PVD film sensor[J]. Journal of Xi'an Jiaotong University, 2018, 52(7):139-145.
[3] 崔荣洪,刘凯,侯波,等. 耦合服役环境下高耐久性薄膜传感器裂纹监测[J]. 航空学报, 2018, 39(3):421535. CUI R H, LIU K, HOU B, et al. Crack monitoring based on high durability film sensor under coupled environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):421535.
[4] 张纪奎,程小全,郦正能. 基于损伤容限设计的机体金属材料力学性能综合表征与评价[J]. 材料工程, 2010(7):49-53. ZHANG J K, CHENG X Q, LI Z N. Synthetic characterization and evaluation of mechanical properties for airframe metal based on damage tolerance design[J]. Journal of Materials Engineering, 2010(7):49-53.
[5] PACKMAN P F, PEARSON H A, OWENS J S, et al. Definition of fatigue cracks through nondestructive testing[J]. Journal of Materials, 1969, 4(3):666-700.
[6] ANDREA G, MICHELE C, MARCOG, et al. Feasibility study of a multi-parameter probability of detection formulation for a Lamb waves-based structural health monitoring approach to light alloy aeronautical plates[J]. Structure Health Monitoring, 2017, 16(2):225-249.
[7] HOLLY L, UNDERHILL P R, KRAUSE T W, et al. Improving probability of detection of bolt hole eddy current inspection[J]. Research in Nondestructive Evaluation, 2010, 21(2):141-156.
[8] JOCHEN H, ANNE J, SANDRA D, et al. Reliability consid-eration of NDT by probability of detection (POD) determination using ultrasound phased array[J]. Engineering Failure Analysis, 2013, 35(12):609-617.
[9] BEN W, DARRYL P, PETER C, et al. Eddy-current induced thermography-probability of detection study of small fatigue cracks in steel, titanium and nickel-based superalloy[J]. NDT & E International, 2012, 49(7):47-56.
[10] 侯波,何宇廷,崔荣洪,等. 同心环状薄膜传感器阵列及其飞机金属结构裂纹监测研究[J]. 机械工程学报, 2015, 51(24):9-14. HOU B, HE Y T, CUI R H, et al. Concentric ring film sensor array and its experimental research on crack monitoring for aircraft metallic structure[J]. Journal of Mechanical Engin-eering, 2015, 51(24):9-14.
[11] 刘佑厚,井玉兰. 铝合金硼酸-硫酸阳极氧化工艺研究[J]. 电镀与精饰, 2006, 22(6):8-11. LIU Y H, JING Y L. Research of anodize process on aluminum alloys in boric acid-sulfuric acid[J]. Plating and Finishing, 2006, 22(6):8-11.
[12] 刘秀丽. 超声波检测螺栓头下裂纹的检测概率曲线测定[J]. 机械强度, 2002, 24(4):626-627. LIU X L. Study on inspection probability curves with ultrasonic detection of cracks covered by screws[J]. Journal of Mechanical Strength, 2002, 24(4):626-627.
[13] KHANDETSKY V, ANTONYUK I. Signal processing in defect detection using back-propagation neural networks[J]. NDT & E International, 2002, 35(7):483-488.
[14] 乔海燕,任学冬,史亦伟,等. GH4169高温合金涡轮盘表面径轴向裂纹的渗透检测可行性[J]. 航空材料学报, 2016, 36(6):92-96. QIAO H Y, REN X D, SHI Y W, et al. Feasibility of penetrant testing on surface axial-radial cracks of GH4169 super alloy turbine disk[J]. Journal of Aeronautical Materials, 2016, 36(6):92-96.
[15] ROUHAN A, SCHOEFS F. Probabilistic modeling of insp-ection results for offshore structures[J]. Structure Safety, 2003, 25(4):607-617.
[1] 刘峰峰, 李玉雄, 隋展鹏, 蔡勇, 张永红, 蒋春萍. 非晶AlBN介质薄膜的制备及相关特性研究[J]. 材料工程, 2020, 48(6): 112-117.
[2] 邓培淼, 宁洪龙, 谢伟广, 刘贤哲, 邓宇熹, 姚日晖, 彭俊彪. 氧化亚锡薄膜晶体管的研究进展[J]. 材料工程, 2020, 48(4): 83-88.
[3] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
[4] 金嘉炜, 李国臣, 张冶, 李公义, 楚增勇. TiO2薄膜型气敏传感器研究进展[J]. 材料工程, 2020, 48(10): 28-38.
[5] 成明, 杨继凯, 郝志旭, 亢嘉琪, 王新, 王国政, 宦克为. TiO2基底对MoO3/TiO2复合薄膜电致变色性能的影响[J]. 材料工程, 2020, 48(10): 163-168.
[6] 李妍, 付东旭, 张青松, 竺云. 单/双离子替代对铁酸铋薄膜性能影响的研究进展[J]. 材料工程, 2019, 47(5): 10-17.
[7] 张明艳, 高升, 吴子剑, 崔宏玉, 高岩. 共聚低热膨胀聚酰亚胺薄膜的制备与表征[J]. 材料工程, 2019, 47(5): 153-158.
[8] 魏白光, 郝鑫禹. PtCu/C合金固溶度梯度薄膜催化剂的后处理改性和析氢性能表征[J]. 材料工程, 2019, 47(11): 107-114.
[9] 樊琳, 许珂敬, 史晓慧, 贾雨辉, 张衡, 魏春城. 不同氟源对FTO薄膜性能影响及其作用机理[J]. 材料工程, 2018, 46(9): 59-64.
[10] 赵景云, Bamber BLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[11] 邱婷, 苗晓亮, 宋文佳, 楼冬, 张树芳. 钙钛矿太阳能电池材料的研究进展[J]. 材料工程, 2018, 46(3): 142-150.
[12] 倪秀英, 赵军, 孙加林, 李洪江, 侯冠明, 田源. 梯度结构Al2O3-(W,Ti) C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备[J]. 材料工程, 2018, 46(2): 50-56.
[13] 刘涛, 赵小如, 蒋显武. 退火条件对Sn掺杂ZnO薄膜光电性能的影响[J]. 材料工程, 2017, 45(8): 19-23.
[14] 杜军, 朱晓莹, 王红美. 纳米多层结构实现硬质薄膜韧化的方法、机理与应用[J]. 材料工程, 2017, 45(8): 102-114.
[15] 黄凤萍, 崔梦丽, 张双, 郭宇煜, 王帅, 李缨. 高硅氧纤维负载纳米Dy/TiO2薄膜的制备及性能[J]. 材料工程, 2017, 45(7): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn