Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 78-84    DOI: 10.11868/j.issn.1001-4381.2018.000823
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响
黄凯1,2, 蒋日鹏1,2, 李晓谦1,2,3, 李瑞卿1,2, 张立华2,3
1. 中南大学 轻合金研究院, 长沙 410083;
2. 中南大学 高性能复杂制造国家重点实验室, 长沙 410083;
3. 中南大学 机电工程学院, 长沙 410083
Effect of ultrasonic field on friction and wear properties of in-situ TiB2/2A14 composite materials
HUANG Kai1,2, JIANG Ri-peng1,2, LI Xiao-qian1,2,3, LI Rui-qing1,2, ZHANG Li-hua2,3
1. Institute of Light Alloy Research, Central South University, Changsha 410083, China;
2. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China;
3. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
全文: PDF(3243 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用超声外场-原位混合盐反应法制备3% TiB2/2A14(体积分数)铝基复合材料,在往复式摩擦磨损试验机上进行4种不同载荷(20,30,40,50N)的磨损实验,研究不同超声处理工艺制备的复合材料的耐磨性和摩擦行为。使用显微硬度计测量基体和复合材料的显微硬度。采用X射线衍射仪、扫描电子显微镜对测试样品进行物相成分鉴定、显微组织和表面磨损形貌观察,并研究其磨损机理。结果表明:超声能够有效打散颗粒团聚,改善颗粒分布状态,强化颗粒与基体的界面结合强度,因此经过超声处理的复合材料的耐磨性和显微硬度明显优于合金基体。经120s超声处理获得的复合材料,其硬度约为基体合金的2倍。在50N载荷的作用下,其磨损率约为基体合金的57.43%。在干摩擦条件下,基体主要表现为黏着磨损,复合材料表现为黏着磨损+磨粒磨损的混合型磨损,耐磨性能更佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄凯
蒋日鹏
李晓谦
李瑞卿
张立华
关键词 TiB2增强颗粒原位反应铝基复合材料摩擦磨损    
Abstract:The 3%TiB2/2A14 (volume fraction) aluminum matrix composites were prepared by in-situ salts-metal reaction under ultrasonic field. The wear experiments with four different load (20, 30, 40, 50N) were carried out with a reciprocating tribometer. The abrasive resistance and friction behavior of composites with different ultrasonic vibration treatment (UVT) process were studied. The mircohardness of matrix and composites were measured by the microhardness tester. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to identify the phase compositions and observe the microstructure and morphology of worn surfaces. And the wear mechanism was also studied. The results manifest that the ultrasonic can efficiently scatter the particle agglomerations, improve the state of particle distribution and reinforce the interfacial bonding strength between particles and matrix. Therefore, the abrasive resistance and microhardness of composites with UVT are obviously superior to alloy matrix. The wear rate and hardness of composites obtained by 120s UVT are about 57.43% and two times of that of the matrix alloy under 50N load. Under the dry friction condition, the main wear mechanism of alloy matrix is adhesion wear and composites is hybrid wear with adhesion wear and abrasive wear and the wear resistance is better.
Key wordsTiB2 reinforced particle    in-situ reaction    aluminum matrix composites    friction and wear
收稿日期: 2018-09-17      出版日期: 2019-12-17
中图分类号:  TB331  
基金资助: 
通讯作者: 蒋日鹏(1983-),男,讲师,博士,研究方向为超声波处理金属熔体的工艺与机理,联系地址:湖南省长沙市岳麓区麓山南路932号中南大学轻合金研究院(410083),E-mail:jiangripeng@163.com     E-mail: jiangripeng@163.com
引用本文:   
黄凯, 蒋日鹏, 李晓谦, 李瑞卿, 张立华. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47(12): 78-84.
HUANG Kai, JIANG Ri-peng, LI Xiao-qian, LI Rui-qing, ZHANG Li-hua. Effect of ultrasonic field on friction and wear properties of in-situ TiB2/2A14 composite materials. Journal of Materials Engineering, 2019, 47(12): 78-84.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000823      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/78
[1] SUDARSHAN M, SURAPPA M K. Dry sliding wear of fly ash particle reinforced A356 Al composites[J]. Wear, 2008, 265(3):349-360.
[2] RADHIKA N, RAGHU R. Dry sliding wear behaviour of aluminium Al-Si12Cu/TiB2, metal matrix composite using response surface methodology[J]. Tribology Letters, 2015, 59(1):2.
[3] MIYAJIMA T, IWAI Y. Effects of reinforcements on sliding wear behavior of aluminum matrix composites[J]. Wear, 2003, 255(1):606-616.
[4] SHEHATA F, FATHY A, ABDELHAMEED M, et al. Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing[J]. Materials & Design, 2009, 30(7):2756-2762.
[5] ZHOU W, ZHAO Y G, LI W, et al. The in situ synthesis and wear performance of a metal matrix composite coating reinforced with TiC-TiB2, particulates, formed on Ti-6Al-4V alloy by a low oxygen partial pressure fusing technique[J]. Surface & Coatings Technology, 2008, 202(9):1652-1660.
[6] 刘正林. 摩擦学原理[M]. 北京:高等教育出版社,2009. LIU Z L. Principles of tribology[M]. Beijing:Higher Education Press, 2009.
[7] 霍晓阳,赵玉涛,陈刚,等. 高硅铝合金及其原位复合材料干滑动磨损性能与机制[J]. 铸造, 2007, 56(4):375-379. HUO X Y, ZHAO Y T, CHEN G, et al. Dry sliding wear behavior and mechanism of high silicon aluminum alloy and in-situ composites[J]. China Foundry, 2007, 56(4):375-379.
[8] 翟秋亚,徐锦锋. Al2O3纤维增强铝基复合材料干滑动磨损机制的研究[J]. 摩擦学学报, 2005, 25(6):535-539. ZHAI Q Y, XU J F. Dry sliding wear mechanism of Al2O3 fiber reinforced Al matrix composites[J]. Tribology, 2005, 25(6):535-539.
[9] SHARMA S C, GIRISH B M, KAMATH R, et al. Effect of SiC particle reinforcement on the unlubricated sliding wear behaviour of ZA-27 alloy composites[J]. Wear, 1997, 213(12):33-40.
[10] 张洁,许晓静,陈康敏,等. SiCp尺寸对SiCp/Cu基复合材料抗磨性能的影响[J]. 摩擦学学报, 2003, 23(4):301-305. ZHANG J, XU X J, CHEN K M, et al. Effect of SiCp size on wear resistance of SiCp/Cu matrix composites[J]. Tribology, 2003, 23(4):301-305.
[11] 张永振,邱明,上官宝,等. 高速干摩擦条件下铝基复合材料的摩擦磨损行为研究[J]. 摩擦学学报, 2005, 25(4):343-347. ZHANG Y Z, QIU M, SHANGGUAN B, et al. Friction and wear behavior of the materials under very high sliding velocity[J]. Tribology, 2005,25(4):343-347.
[12] JIANG X S, WANG N J, ZHU D G. Friction and wear properties of in-situ synthesized Al2O3 reinforced aluminum composites[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):2352-2358.
[13] KUMAR G N, NARAYANASAMY R, NATARAJAN S, et al. Dry sliding wear behaviour of AA 6351-ZrB2 in situ composite at room temperature[J]. Materials & Design, 2010, 31(3):1526-1532.
[14] KUMAR S, CHAKRABORTY M, SARMA V S, et al. Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites[J]. Wear, 2008, 265(1):134-142.
[15] 温诗铸,黄平. 摩擦学原理[M].2版.北京:清华大学出版社,2002:282-284. WEN S Z, HUANG P. Principles of tribology[M].2nd ed. Beijing:Tsinghua University Press, 2002:282-284.
[16] 李桂荣,戴起勋,赵玉涛,等. Al-Zr-O-B体系原位合成颗粒增强铝基复合材料及其性能[J]. 中国有色金属学报, 2005, 15(4):572-577. LI G R, DAI Q X, ZHAO Y T, et al. Al-Zr-O-B fabrication and properties of particles reinforced aluminum matrix composites in-situ synthesized in Al-Zr-O-B system[M]. The Chinese Journal of Nonferrous Metals, 2005, 15(4):572-577.
[17] ZHANG S L, DONG X W, ZHAO Y T, et al. Preparation and wear properties of TiB2/Al-30Si composites via in-situ melt reactions under high-energy ultrasonic field[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12):3894-3900.
[18] YANG H, LIU Y, ZHANG T, et al. Dry sliding tribological properties of a dendrite-reinforced Zr-based bulk metallic glass matrix composite[J]. Journal of Materials Science & Technology, 2014, 30(6):576-583.
[19] ONAT A. Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium-copper alloy matrix composites produced by direct squeeze casting method[J]. Journal of Alloys and Compounds, 2010, 489(1):119-124.
[20] 刘用,马胜国,刘英杰,等. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2):99-104. LIU Y, MA S G, LIU Y J, et al. Friction and wear properties of AlxCrCuFeNi2 high-entropy alloys with multi-principal-elements[J]. Journal of Materials Engineering, 2018, 46(2):99-104.
[1] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[2] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[3] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[4] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[5] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[6] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[7] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[8] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[9] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[10] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[11] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[12] 贺毅强, 徐虎林, 钱晨晨, 丁云飞, 冯文, 陈劲松, 李化强, 冯立超. 基体成分对SiCP/Al-Fe-V-Si复合材料显微组织与性能的影响[J]. 材料工程, 2018, 46(12): 124-130.
[13] 杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
[14] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[15] 金小越, 吴杰, 杨璇, 王彬, 陈琳, 曲尧, 薛文斌. 槽电压对纯铁表面液相等离子体电解硼碳氮三元共渗层摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 58-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn