Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (6): 70-76    DOI: 10.11868/j.issn.1001-4381.2018.000856
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能
马明亮(), 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤
青岛理工大学 土木工程学院, 山东 青岛 266033
Synthesis and catalytic performance of magnetic core-shell structure Fe3O4/P(GMA-DVB)-SH-Au composite catalyst
Ming-liang MA(), Yu-ying YANG, Ping LYU, Li JIA, Xin-cheng JIA, Liu CHEN, Ling-yun KONG, Li-feng CHI
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
全文: PDF(3463 KB)   HTML ( 19 )  
输出: BibTeX | EndNote (RIS)      
摘要 

首先通过水热法合成了单分散空心Fe3O4磁球,之后利用蒸馏沉淀聚合将P(GMA-DVB)聚合物层包覆在Fe3O4磁球表面形成Fe3O4/P(GMA-DVB)核壳结构,巯基化处理后吸附Au纳米粒子,得到磁性核壳Fe3O4/P(GMA-DVB)-SH-Au复合催化剂。利用TEM,SEM,FTIR,XRD,TGA,VSM及UV-vis对其进行表征,并考察该催化剂在催化还原4-硝基苯酚反应中的催化性能。结果表明合成的材料粒径均匀,球形度规整,核壳结构明显,在催化反应中,Fe3O4/P(GMA-DVB)-SH-Au表现出优异的催化性能,而且经过连续8次循环使用后,催化效率仍可保持80%以上。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马明亮
杨玉莹
吕平
贾丽
贾新城
陈柳
孔令运
池丽凤
关键词 功能材料Fe3O4/P (GMA-DVB)-SH-Au核壳催化剂催化性能磁性分离循环利用    
Abstract

In this work, monodisperse hollow Fe3O4 magnetic microspheres were synthesized by hydrothermal method. And the P(GMA-DVB) polymer layer was coated on the surface of Fe3O4 microspheres by distillation precipitation polymerization method to form core-shell structure. After adsorption of Au nanoparticles, a magnetic core-shell Fe3O4/P(GMA-DVB)-SH-Au supported catalyst was obtained. The morphologies, structures and catalytic performance of the catalysts were characterized by TEM, SEM, FTIR, XRD, TGA, VSM and UV-vis. Results show that the synthesized materials have uniform particle size, regular microsphere, and obvious core-shell struc-ture. For the catalytic reduction of 4-nitrophenol, the Fe3O4/P(GMA-DVB)-SH-Au exhibits excellent catalytic performance, and the catalytic efficiency still maintains over 80% after 8 successive cycles.

Key wordsfunctional materials    core-shell Fe3O4/P(GMA-DVB)-SH-Au catalyst    catalytic property    magnetic separation    recyclable catalyst
收稿日期: 2018-07-16      出版日期: 2019-06-17
中图分类号:  TB34  
基金资助:国家自然科学基金项目(51503116);国家自然科学基金项目(51578298)
通讯作者: 马明亮     E-mail: mamingliang@qut.edu.cn
作者简介: 马明亮(1983-), 男, 博士, 讲师, 主要从事新型功能材料及性能研究, 联系地址:山东省青岛市市北区抚顺路11号青岛理工大学(266033), E-mail:mamingliang@qut.edu.cn
引用本文:   
马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
Ming-liang MA, Yu-ying YANG, Ping LYU, Li JIA, Xin-cheng JIA, Liu CHEN, Ling-yun KONG, Li-feng CHI. Synthesis and catalytic performance of magnetic core-shell structure Fe3O4/P(GMA-DVB)-SH-Au composite catalyst. Journal of Materials Engineering, 2019, 47(6): 70-76.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000856      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/70
Fig.1  Fe3O4/P(GMA-DVB)-SH-Au核壳磁性催化剂的合成
Fig.2  材料的微观形貌图(a)Fe3O4微球TEM照片;(b)Fe3O4/P(GMA-DVB)微球TEM照片;(c)Fe3O4/P(GMA-DVB)-SH-Au微球TEM照片; (d)Fe3O4/P(GMA-DVB)-SH-Au微球SEM照片
Fig.3  微球的FTIR光谱
Fig.4  微球的XRD谱图
Fig.5  微球的TGA曲线
Fig.6  微球的VSM曲线
Fig.7  宏观磁性分离实验(a)Fe3O4/P(GMA-DVB)-SH-Au分散在水中;(b)外加磁场对微球的吸引
Fig.8  催化反应的UV-vis光谱
Fig.9  ln(Ct/C0)与催化时间的关系图
Sample 4-NP/ mL NaBH4/ mL Time/ min Conversion of 4-NP/%
- 1 - 10 0
- 1 2 10 4.49
Fe3O4/P(GMA- DVB)-SH 1 2 10 5.03
Fe3O4/P(GMA- DVB)-SH-Au 1 2 10 96.26
Table 1  不同条件下4-NP的降解
Fig.10  Fe3O4/P(GMA-DVB)-SH-Au催化的循环实验结果
1 RICHARDSON S D , TERNES T A . Water analysis: emerging contaminants and current issues[J]. Anal Chem, 2018, 90 (1): 398- 428.
doi: 10.1021/acs.analchem.7b04577
2 FENG J , SU L , MA Y , et al. CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol[J]. Chem Eng J, 2013, 221, 16- 24.
doi: 10.1016/j.cej.2013.02.009
3 LAI B , CHEN Z , ZHOU Y , et al. Removal of high concentr-ation p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI)[J]. J Hazard Mater, 2013, 250-251, 220- 228.
doi: 10.1016/j.jhazmat.2013.02.002
4 ZAREJOUSHEGHANI M , MODER M , BORSDORF H . A new strategy for synthesis of an in-tube molecularly imprinted polymer-solid phase microextraction device: selective off-line extraction of 4-nitrophenol as an example of priority pollutants from environmental water samples[J]. Anal Chim Acta, 2013, 798, 48- 55.
doi: 10.1016/j.aca.2013.08.038
5 HASSAN M , ZHAO Y , XIE B . Employing TiO2 photocatalysis to deal with landfill leachate: current status and development[J]. Chem Eng J, 2016, 285, 264- 275.
doi: 10.1016/j.cej.2015.09.093
6 JIANG Z , ZHU C , WAN W , et al. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production[J]. J Mater Chem A, 2016, 4 (5): 1806- 1818.
doi: 10.1039/C5TA09919F
7 DONG Z , LE X , DONG C , et al. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodec-hlorination of 4-chlorophenol[J]. Appl Catal B-Environ, 2015, 162, 372- 380.
doi: 10.1016/j.apcatb.2014.07.009
8 LI C , CHEN G , SUN J , et al. Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water[J]. Appl Catal B-Environ, 2016, 188, 39- 47.
doi: 10.1016/j.apcatb.2016.01.054
9 WANG M L , JIANG T T , LU Y , et al. Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacr-ylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol[J]. J Mater Chem A, 2013, 1 (19): 5923- 5933.
10 DAI B , LI X , ZHANG J , et al. Application of mesoporous carbon nitride as a support for an Au catalyst for acetylene hydrochlorination[J]. Chem Eng Sci, 2015, 135, 472- 478.
doi: 10.1016/j.ces.2014.12.017
11 WANG H , SHI Y , HARUTA M , et al. Aerobic oxidation of benzyl alcohol in water catalyzed by gold nanoparticles supported on imidazole containing crosslinked polymer[J]. Appl Catal A-Gen, 2017, 536, 27- 34.
doi: 10.1016/j.apcata.2017.02.015
12 王珍珍, 翟尚儒, 翟滨, 等. 基于对硝基苯酚还原模型反应的纳米金催化材料[J]. 化学进展, 2014, 26 (2/3): 234- 247.
12 WANG Z Z , ZHAI S R , ZHAI B , et al. Preparation and catalytic properties of nano-Au catalytic materials based on the reduction of 4-nitrophenol[J]. Prog Chem, 2014, 26 (2/3): 234- 247.
13 SHYLESH S , SCHUNEMANN V , THIEL W R . Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis[J]. Angew Chem Int Edit, 2010, 49 (20): 3428- 3459.
doi: 10.1002/anie.200905684
14 ZHANG B , ZHANG H , FAN X , et al. Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N- isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein[J]. J Colloid Interf Sci, 2013, 398, 51- 58.
doi: 10.1016/j.jcis.2013.01.042
15 CHEN Y , SONG B , LI M , et al. Fe3O4 Nanoparticles embed-ded in uniform mesoporous carbon spheres for superior high‐rate battery applications[J]. Adv Funct Mater, 2014, 24 (3): 319- 326.
doi: 10.1002/adfm.v24.3
16 TUO Y , LIU G , DONG B , et al. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds[J]. Sci Rep-UK, 2015, 5, 13515.
doi: 10.1038/srep13515
17 ZHAO Y , YEH Y , LIU R , et al. Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst[J]. Solid State Sci, 2015, 45, 9- 14.
doi: 10.1016/j.solidstatesciences.2015.04.010
18 LIU Y , LI C , ZHANG H , et al. One-pot hydrothermal synth-esis of highly monodisperse water-dispersible hollow magnetic microspheres and construction of photonic crystals[J]. Chem Eng J, 2015, 259, 779- 786.
doi: 10.1016/j.cej.2014.08.051
19 戴田霖, 张艳梅, 储刚, 等. 核-壳结构磁性金属有机骨架材料Fe3O4@UiO-66-NH2的合成、表征及催化性能[J]. 无机化学学报, 2016, 32 (4): 606- 619.
19 DAI T L , ZHANG Y M , CHU G , et al. Core-shell magnetic microsphere Fe3O4@UiO-66-NH2: characterization and applic-ation as heterogeneous catalyst[J]. Chinese J Inorg Chem, 2016, 32 (4): 606- 619.
20 MADDAH B , SABOURI A , HASANZADEH M . Magnetic solid-phase extraction of oxadiazon and profenofos from environ-mental water using magnetite Fe3O4@SiO2-C18 nanoparticles[J]. J Polym Environ, 2017, 25 (3): 770- 780.
doi: 10.1007/s10924-016-0859-3
21 MEZGEBE M M , YAN Z , WEI G , et al. 3D graphene-Fe3O4-polyaniline, a novel ternary composite for supercapacitor elect-rodes with improved electrochemical properties[J]. Mater Today Energy, 2017, 5, 164- 172.
doi: 10.1016/j.mtener.2017.06.007
22 CHENG J , ZHAO S , GAO W , et al. Au/Fe3O4@TiO2 hollow nanospheres as efficient catalysts for the reduction of 4-nitrophenol and photocatalytic degradation of rhodamine B[J]. React Kinet Mech Cat, 2017, 121 (2): 797- 810.
23 LI Z , JIA Z , NI T , et al. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction[J]. Appl Surf Sci, 2017, 426, 160- 168.
doi: 10.1016/j.apsusc.2017.07.173
24 BAO F , TAN F , WANG W , et al. Facile preparation of Ag/Ni(OH)2 composites with enhanced catalytic activity for reduction of 4-nitrophenol[J]. RSC Adv, 2017, 7 (23): 14283- 14289.
doi: 10.1039/C6RA27153G
25 ZHANG W , SUN Y , ZHANG L . In situ synthesis of monodi-sperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol[J]. Ind Eng Chem Res, 2015, 54 (25): 6480- 6488.
doi: 10.1021/acs.iecr.5b01010
26 TANG S , VONGEHR S , MENG X . Controllable incorporation of Ag and Ag-Au nanoparticles in carbon spheres for tunable optical and catalytic properties[J]. J Mater Chem, 2010, 20 (26): 5436- 5445.
doi: 10.1039/c0jm00456a
27 ZHANG P , SHAO C , ZHANG Z , et al. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2011, 3 (8): 3357- 3363.
doi: 10.1039/c1nr10405e
[1] 谢桂香, 龚朋, 吕芬芬, 胡志彪. 原位构建P-N结复合材料及其可见光光催化性能[J]. 材料工程, 2021, 49(3): 107-114.
[2] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[3] 曾凡达, 李纲. 花状CdO微球的制备及其对高氯酸铵热分解的催化性能[J]. 材料工程, 2020, 48(6): 91-97.
[4] 周琦, 王亚飞, 冯基伟, 李志洋. 脱合金化制备纳米多孔Ni-Fe合金及其电催化性能[J]. 材料工程, 2019, 47(4): 77-83.
[5] 丁春香, 潘明珠. 基于纤维素纳米晶体的刺激响应功能材料的研究进展[J]. 材料工程, 2019, 47(1): 32-41.
[6] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[7] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[8] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
[9] 曾斌, 陈小华, 汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程, 2017, 45(12): 99-105.
[10] 刘淑玲, 韩晓莉, 仝建波. Ag/InP复合材料的制备、表征及其性能[J]. 材料工程, 2017, 45(10): 18-22.
[11] 史艳华, 赵杉林, 梁平, 王玲, 关学雷. pH值对阳极电沉积Mn-Mo氧化物结构与性能的影响[J]. 材料工程, 2016, 44(12): 7-12.
[12] 谈玲华, 徐建华, 寇波, 杭祖圣, 石丽丽, 王钧. g-C3N4/NiO复合材料的制备及其对AP热分解的影响[J]. 材料工程, 2016, 44(11): 96-100.
[13] 张平, 莫尊理, 张春, 韩立娟, 李政. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3): 72-77.
[14] 赵斯琴, 娜米拉, 长山. 钛酸钠纳米线制备TiO2纳米线的反应条件[J]. 材料工程, 2015, 43(12): 58-62.
[15] 刘大博, 祁洪飞, 成波. PS@Au核壳结构纳米催化剂的制备及性能研究[J]. 材料工程, 2012, 0(7): 1-4,91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn