Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 70-76    DOI: 10.11868/j.issn.1001-4381.2018.000856
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能
马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤
青岛理工大学 土木工程学院, 山东 青岛 266033
Synthesis and catalytic performance of magnetic core-shell structure Fe3O4/P(GMA-DVB)-SH-Au composite catalyst
MA Ming-liang, YANG Yu-ying, LYU Ping, JIA Li, JIA Xin-cheng, CHEN Liu, KONG Ling-yun, CHI Li-feng
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
全文: PDF(3463 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 首先通过水热法合成了单分散空心Fe3O4磁球,之后利用蒸馏沉淀聚合将P(GMA-DVB)聚合物层包覆在Fe3O4磁球表面形成Fe3O4/P(GMA-DVB)核壳结构,巯基化处理后吸附Au纳米粒子,得到磁性核壳Fe3O4/P(GMA-DVB)-SH-Au复合催化剂。利用TEM,SEM,FTIR,XRD,TGA,VSM及UV-vis对其进行表征,并考察该催化剂在催化还原4-硝基苯酚反应中的催化性能。结果表明合成的材料粒径均匀,球形度规整,核壳结构明显,在催化反应中,Fe3O4/P(GMA-DVB)-SH-Au表现出优异的催化性能,而且经过连续8次循环使用后,催化效率仍可保持80%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马明亮
杨玉莹
吕平
贾丽
贾新城
陈柳
孔令运
池丽凤
关键词 功能材料Fe3O4/P (GMA-DVB)-SH-Au核壳催化剂催化性能磁性分离循环利用    
Abstract:In this work, monodisperse hollow Fe3O4 magnetic microspheres were synthesized by hydrothermal method. And the P(GMA-DVB) polymer layer was coated on the surface of Fe3O4 microspheres by distillation precipitation polymerization method to form core-shell structure. After adsorption of Au nanoparticles, a magnetic core-shell Fe3O4/P(GMA-DVB)-SH-Au supported catalyst was obtained. The morphologies, structures and catalytic performance of the catalysts were characterized by TEM, SEM, FTIR, XRD, TGA, VSM and UV-vis. Results show that the synthesized materials have uniform particle size, regular microsphere, and obvious core-shell struc-ture. For the catalytic reduction of 4-nitrophenol, the Fe3O4/P(GMA-DVB)-SH-Au exhibits excellent catalytic performance, and the catalytic efficiency still maintains over 80% after 8 successive cycles.
Key wordsfunctional materials    core-shell Fe3O4/P(GMA-DVB)-SH-Au catalyst    catalytic property    magnetic separation    recyclable catalyst
收稿日期: 2018-07-16      出版日期: 2019-06-17
中图分类号:  TB34  
通讯作者: 马明亮(1983-),男,博士,讲师,主要从事新型功能材料及性能研究,联系地址:山东省青岛市市北区抚顺路11号青岛理工大学(266033),E-mail:mamingliang@qut.edu.cn     E-mail: mamingliang@qut.edu.cn
引用本文:   
马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
MA Ming-liang, YANG Yu-ying, LYU Ping, JIA Li, JIA Xin-cheng, CHEN Liu, KONG Ling-yun, CHI Li-feng. Synthesis and catalytic performance of magnetic core-shell structure Fe3O4/P(GMA-DVB)-SH-Au composite catalyst. Journal of Materials Engineering, 2019, 47(6): 70-76.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000856      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/70
[1] RICHARDSON S D, TERNES T A. Water analysis:emerging contaminants and current issues[J]. Anal Chem, 2018, 90(1):398-428.
[2] FENG J, SU L, MA Y, et al. CuFe2O4 magnetic nanoparticles:a simple and efficient catalyst for the reduction of nitrophenol[J]. Chem Eng J, 2013, 221:16-24.
[3] LAI B, CHEN Z, ZHOU Y, et al. Removal of high concentr-ation p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI)[J]. J Hazard Mater, 2013, 250-251:220-228.
[4] ZAREJOUSHEGHANI M, MODER M, BORSDORF H. A new strategy for synthesis of an in-tube molecularly imprinted polymer-solid phase microextraction device:selective off-line extraction of 4-nitrophenol as an example of priority pollutants from environmental water samples[J]. Anal Chim Acta, 2013, 798:48-55.
[5] HASSAN M, ZHAO Y, XIE B. Employing TiO2 photocatalysis to deal with landfill leachate:current status and development[J]. Chem Eng J, 2016, 285:264-275.
[6] JIANG Z, ZHU C, WAN W, et al. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production[J]. J Mater Chem A, 2016, 4(5):1806-1818.
[7] DONG Z, LE X, DONG C, et al. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodec-hlorination of 4-chlorophenol[J]. Appl Catal B-Environ, 2015, 162:372-380.
[8] LI C, CHEN G, SUN J, et al. Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water[J]. Appl Catal B-Environ, 2016, 188:39-47.
[9] WANG M L, JIANG T T, LU Y, et al. Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacr-ylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol[J]. J Mater Chem A, 2013, 1(19):5923-5933.
[10] DAI B, LI X, ZHANG J, et al. Application of mesoporous carbon nitride as a support for an Au catalyst for acetylene hydrochlorination[J]. Chem Eng Sci, 2015, 135:472-478.
[11] WANG H, SHI Y, HARUTA M, et al. Aerobic oxidation of benzyl alcohol in water catalyzed by gold nanoparticles supported on imidazole containing crosslinked polymer[J]. Appl Catal A-Gen, 2017, 536:27-34.
[12] 王珍珍,翟尚儒,翟滨,等.基于对硝基苯酚还原模型反应的纳米金催化材料[J].化学进展, 2014, 26(2/3):234-247. WANG Z Z, ZHAI S R, ZHAI B, et al. Preparation and catalytic properties of nano-Au catalytic materials based on the reduction of 4-nitrophenol[J]. Prog Chem, 2014, 26(2/3):234-247.
[13] SHYLESH S, SCHUNEMANN V, THIEL W R. Magnetically separable nanocatalysts:bridges between homogeneous and heterogeneous catalysis[J]. Angew Chem Int Edit, 2010, 49(20):3428-3459.
[14] ZHANG B, ZHANG H, FAN X, et al. Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein[J]. J Colloid Interf Sci, 2013, 398:51-58.
[15] CHEN Y, SONG B, LI M, et al. Fe3O4 Nanoparticles embed-ded in uniform mesoporous carbon spheres for superior high-rate battery applications[J]. Adv Funct Mater, 2014, 24(3):319-326.
[16] TUO Y, LIU G, DONG B, et al. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds[J]. Sci Rep-UK, 2015, 5:13515.
[17] ZHAO Y, YEH Y, LIU R, et al. Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst[J]. Solid State Sci, 2015, 45:9-14.
[18] LIU Y, LI C, ZHANG H, et al. One-pot hydrothermal synth-esis of highly monodisperse water-dispersible hollow magnetic microspheres and construction of photonic crystals[J]. Chem Eng J, 2015, 259:779-786.
[19] 戴田霖,张艳梅,储刚,等. 核-壳结构磁性金属有机骨架材料Fe3O4@UiO-66-NH2的合成、表征及催化性能[J]. 无机化学学报, 2016, 32(4):606-619. DAI T L, ZHANG Y M, CHU G, et al. Core-shell magnetic microsphere Fe3O4@UiO-66-NH2:characterization and applic-ation as heterogeneous catalyst[J]. Chinese J Inorg Chem, 2016, 32(4):606-619.
[20] MADDAH B, SABOURI A, HASANZADEH M. Magnetic solid-phase extraction of oxadiazon and profenofos from environ-mental water using magnetite Fe3O4@SiO2-C18 nanoparticles[J]. J Polym Environ, 2017, 25(3):770-780.
[21] MEZGEBE M M, YAN Z, WEI G, et al. 3D graphene-Fe3O4-polyaniline, a novel ternary composite for supercapacitor elect-rodes with improved electrochemical properties[J]. Mater Today Energy, 2017, 5:164-172.
[22] CHENG J, ZHAO S, GAO W, et al. Au/Fe3O4@TiO2 hollow nanospheres as efficient catalysts for the reduction of 4-nitrophenol and photocatalytic degradation of rhodamine B[J]. React Kinet Mech Cat, 2017, 121(2):797-810.
[23] LI Z, JIA Z, NI T, et al. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction[J]. Appl Surf Sci, 2017, 426:160-168.
[24] BAO F, TAN F, WANG W, et al. Facile preparation of Ag/Ni(OH)2 composites with enhanced catalytic activity for reduction of 4-nitrophenol[J]. RSC Adv. 2017, 7(23):14283-14289.
[25] ZHANG W, SUN Y, ZHANG L. In situ synthesis of monodi-sperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol[J]. Ind Eng Chem Res, 2015, 54(25):6480-6488.
[26] TANG S,VONGEHR S, MENG X. Controllable incorporation of Ag and Ag-Au nanoparticles in carbon spheres for tunable optical and catalytic properties[J]. J Mater Chem, 2010, 20(26):5436-5445.
[27] ZHANG P, SHAO C, ZHANG Z, et al. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2011, 3(8):3357-3363.
[1] 周琦, 王亚飞, 冯基伟, 李志洋. 脱合金化制备纳米多孔Ni-Fe合金及其电催化性能[J]. 材料工程, 2019, 47(4): 77-83.
[2] 丁春香, 潘明珠. 基于纤维素纳米晶体的刺激响应功能材料的研究进展[J]. 材料工程, 2019, 47(1): 32-41.
[3] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[4] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[5] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
[6] 曾斌, 陈小华, 汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程, 2017, 45(12): 99-105.
[7] 刘淑玲, 韩晓莉, 仝建波. Ag/InP复合材料的制备、表征及其性能[J]. 材料工程, 2017, 45(10): 18-22.
[8] 史艳华, 赵杉林, 梁平, 王玲, 关学雷. pH值对阳极电沉积Mn-Mo氧化物结构与性能的影响[J]. 材料工程, 2016, 44(12): 7-12.
[9] 谈玲华, 徐建华, 寇波, 杭祖圣, 石丽丽, 王钧. g-C3N4/NiO复合材料的制备及其对AP热分解的影响[J]. 材料工程, 2016, 44(11): 96-100.
[10] 张平, 莫尊理, 张春, 韩立娟, 李政. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3): 72-77.
[11] 赵斯琴, 娜米拉, 长山. 钛酸钠纳米线制备TiO2纳米线的反应条件[J]. 材料工程, 2015, 43(12): 58-62.
[12] 刘大博, 祁洪飞, 成波. PS@Au核壳结构纳米催化剂的制备及性能研究[J]. 材料工程, 2012, 0(7): 1-4,91.
[13] 钱天才, 牟雷, 周烈兴. TiO2掺杂Ce和La离子薄膜的微结构与光催化性能[J]. 材料工程, 2010, 0(1): 58-61.
[14] 郭子斌, 赵宏生, 胡红坡. SiO2/TiO2复合薄膜光催化性能的研究[J]. 材料工程, 2008, 0(12): 38-40,45.
[15] 封姣, 任申玥, 陈明清, 倪忠斌. 负载型纳米Pt颗粒的制备及催化性能研究[J]. 材料工程, 2008, 0(10): 272-274,277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn