In this work, monodisperse hollow Fe3O4 magnetic microspheres were synthesized by hydrothermal method. And the P(GMA-DVB) polymer layer was coated on the surface of Fe3O4 microspheres by distillation precipitation polymerization method to form core-shell structure. After adsorption of Au nanoparticles, a magnetic core-shell Fe3O4/P(GMA-DVB)-SH-Au supported catalyst was obtained. The morphologies, structures and catalytic performance of the catalysts were characterized by TEM, SEM, FTIR, XRD, TGA, VSM and UV-vis. Results show that the synthesized materials have uniform particle size, regular microsphere, and obvious core-shell struc-ture. For the catalytic reduction of 4-nitrophenol, the Fe3O4/P(GMA-DVB)-SH-Au exhibits excellent catalytic performance, and the catalytic efficiency still maintains over 80% after 8 successive cycles.
RICHARDSON S D , TERNES T A . Water analysis: emerging contaminants and current issues[J]. Anal Chem, 2018, 90 (1): 398- 428.
doi: 10.1021/acs.analchem.7b04577
2
FENG J , SU L , MA Y , et al. CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol[J]. Chem Eng J, 2013, 221, 16- 24.
doi: 10.1016/j.cej.2013.02.009
3
LAI B , CHEN Z , ZHOU Y , et al. Removal of high concentr-ation p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI)[J]. J Hazard Mater, 2013, 250-251, 220- 228.
doi: 10.1016/j.jhazmat.2013.02.002
4
ZAREJOUSHEGHANI M , MODER M , BORSDORF H . A new strategy for synthesis of an in-tube molecularly imprinted polymer-solid phase microextraction device: selective off-line extraction of 4-nitrophenol as an example of priority pollutants from environmental water samples[J]. Anal Chim Acta, 2013, 798, 48- 55.
doi: 10.1016/j.aca.2013.08.038
5
HASSAN M , ZHAO Y , XIE B . Employing TiO2 photocatalysis to deal with landfill leachate: current status and development[J]. Chem Eng J, 2016, 285, 264- 275.
doi: 10.1016/j.cej.2015.09.093
6
JIANG Z , ZHU C , WAN W , et al. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production[J]. J Mater Chem A, 2016, 4 (5): 1806- 1818.
doi: 10.1039/C5TA09919F
7
DONG Z , LE X , DONG C , et al. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodec-hlorination of 4-chlorophenol[J]. Appl Catal B-Environ, 2015, 162, 372- 380.
doi: 10.1016/j.apcatb.2014.07.009
8
LI C , CHEN G , SUN J , et al. Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water[J]. Appl Catal B-Environ, 2016, 188, 39- 47.
doi: 10.1016/j.apcatb.2016.01.054
9
WANG M L , JIANG T T , LU Y , et al. Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacr-ylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol[J]. J Mater Chem A, 2013, 1 (19): 5923- 5933.
10
DAI B , LI X , ZHANG J , et al. Application of mesoporous carbon nitride as a support for an Au catalyst for acetylene hydrochlorination[J]. Chem Eng Sci, 2015, 135, 472- 478.
doi: 10.1016/j.ces.2014.12.017
11
WANG H , SHI Y , HARUTA M , et al. Aerobic oxidation of benzyl alcohol in water catalyzed by gold nanoparticles supported on imidazole containing crosslinked polymer[J]. Appl Catal A-Gen, 2017, 536, 27- 34.
doi: 10.1016/j.apcata.2017.02.015
WANG Z Z , ZHAI S R , ZHAI B , et al. Preparation and catalytic properties of nano-Au catalytic materials based on the reduction of 4-nitrophenol[J]. Prog Chem, 2014, 26 (2/3): 234- 247.
13
SHYLESH S , SCHUNEMANN V , THIEL W R . Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis[J]. Angew Chem Int Edit, 2010, 49 (20): 3428- 3459.
doi: 10.1002/anie.200905684
14
ZHANG B , ZHANG H , FAN X , et al. Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N- isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein[J]. J Colloid Interf Sci, 2013, 398, 51- 58.
doi: 10.1016/j.jcis.2013.01.042
15
CHEN Y , SONG B , LI M , et al. Fe3O4 Nanoparticles embed-ded in uniform mesoporous carbon spheres for superior high‐rate battery applications[J]. Adv Funct Mater, 2014, 24 (3): 319- 326.
doi: 10.1002/adfm.v24.3
16
TUO Y , LIU G , DONG B , et al. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds[J]. Sci Rep-UK, 2015, 5, 13515.
doi: 10.1038/srep13515
17
ZHAO Y , YEH Y , LIU R , et al. Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst[J]. Solid State Sci, 2015, 45, 9- 14.
doi: 10.1016/j.solidstatesciences.2015.04.010
18
LIU Y , LI C , ZHANG H , et al. One-pot hydrothermal synth-esis of highly monodisperse water-dispersible hollow magnetic microspheres and construction of photonic crystals[J]. Chem Eng J, 2015, 259, 779- 786.
doi: 10.1016/j.cej.2014.08.051
DAI T L , ZHANG Y M , CHU G , et al. Core-shell magnetic microsphere Fe3O4@UiO-66-NH2: characterization and applic-ation as heterogeneous catalyst[J]. Chinese J Inorg Chem, 2016, 32 (4): 606- 619.
20
MADDAH B , SABOURI A , HASANZADEH M . Magnetic solid-phase extraction of oxadiazon and profenofos from environ-mental water using magnetite Fe3O4@SiO2-C18 nanoparticles[J]. J Polym Environ, 2017, 25 (3): 770- 780.
doi: 10.1007/s10924-016-0859-3
21
MEZGEBE M M , YAN Z , WEI G , et al. 3D graphene-Fe3O4-polyaniline, a novel ternary composite for supercapacitor elect-rodes with improved electrochemical properties[J]. Mater Today Energy, 2017, 5, 164- 172.
doi: 10.1016/j.mtener.2017.06.007
22
CHENG J , ZHAO S , GAO W , et al. Au/Fe3O4@TiO2 hollow nanospheres as efficient catalysts for the reduction of 4-nitrophenol and photocatalytic degradation of rhodamine B[J]. React Kinet Mech Cat, 2017, 121 (2): 797- 810.
23
LI Z , JIA Z , NI T , et al. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction[J]. Appl Surf Sci, 2017, 426, 160- 168.
doi: 10.1016/j.apsusc.2017.07.173
24
BAO F , TAN F , WANG W , et al. Facile preparation of Ag/Ni(OH)2 composites with enhanced catalytic activity for reduction of 4-nitrophenol[J]. RSC Adv, 2017, 7 (23): 14283- 14289.
doi: 10.1039/C6RA27153G
25
ZHANG W , SUN Y , ZHANG L . In situ synthesis of monodi-sperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol[J]. Ind Eng Chem Res, 2015, 54 (25): 6480- 6488.
doi: 10.1021/acs.iecr.5b01010
26
TANG S , VONGEHR S , MENG X . Controllable incorporation of Ag and Ag-Au nanoparticles in carbon spheres for tunable optical and catalytic properties[J]. J Mater Chem, 2010, 20 (26): 5436- 5445.
doi: 10.1039/c0jm00456a
27
ZHANG P , SHAO C , ZHANG Z , et al. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2011, 3 (8): 3357- 3363.
doi: 10.1039/c1nr10405e