Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (12): 85-91    DOI: 10.11868/j.issn.1001-4381.2018.000863
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能
魏帅虎, 胡茂良(), 吉泽升, 许红雨, 王晔
哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
Microstructure and mechanical properties of Al2O3/AZ31 composites prepared by multi-pass hot extrusion
Shuai-hu WEI, Mao-liang HU(), Ze-sheng JI, Hong-yu XU, Ye WANG
School of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
全文: PDF(4403 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用多道次热挤压制备Al2O3颗粒增强AZ31镁基复合材料,利用OM,SEM,TEM对Al2O3/AZ31复合材料进行组织观察,利用维氏硬度仪、电子万能拉伸试验机对Al2O3/AZ31复合材料进行力学性能测试。结果表明:经过多道次热挤压后,Al2O3颗粒均匀地分散在AZ31镁基体中,Al2O3颗粒对基体组织的晶粒细化作用得到增强,复合材料的晶粒尺寸随着道次的增加而显著减小。经过4道次热挤压后,Al2O3/AZ31复合材料的力学性能显著提高,其硬度,抗拉强度和屈服强度分别达到89HV,305MPa和198MPa,相比于第1道次热挤压后,其硬度,抗拉强度和屈服强度分别提高了19.2%,14.8%和14.1%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏帅虎
胡茂良
吉泽升
许红雨
王晔
关键词 热挤压镁基复合材料力学性能动态再结晶显微组织    
Abstract

Multi-pass hot extrusion was used to prepare the Al2O3/AZ31 composite.The microstru-cture was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and mechanical properties were tested by Vickers hardness tester and electron universal strength tester. The results show that Al2O3 particles are uniformly distributed in AZ31 magnesium matrix by multi-pass hot extrusion. The grain refining effect of Al2O3 particles on the matrix is enhanced, and the grain size of the composite decreases significantly with the increase of the pass. During the hot extrusion process, the dislocation density around the Al2O3 particles increases, and the high-density dislocation region facilitates the dynamic recrystallization nucleation, so that the grains of the Al2O3/AZ31 composite are significantly refined. The Al2O3 particles are gradually distributed into a long strip from the initial island distribution, then distributed in a linear pattern, and finally distributed uniformly in the form of particles in the AZ31 magnesium matrix. After fourth-pass hot extrusion, the mechanical properties of Al2O3/AZ31 composite are significantly improved, and hardness, tensile strength and yield strength are 89HV, 305MPa and 198MPa, respectively. The hardness, tensile strength and yield strength increase by 19.2%, 14.8%, and 14.1%, respectively, compared with the first-pass hot extrusion.

Key wordshot extrusion    magnesium matrix composite    mechanical property    dynamic recrystalli-zation    microstructure
收稿日期: 2018-07-17      出版日期: 2019-12-17
中图分类号:  TB331  
基金资助:国家自然科学基金资助项目(51404082);哈尔滨理工大学青年拔尖创新人才培养计划(201510)
通讯作者: 胡茂良     E-mail: humaoliang@hrbust.edu.cn
作者简介: 胡茂良(1980-), 男, 教授, 博士, 研究方向为铝镁合金的固相回收、镁基复合材料的制备与性能, 联系地址:黑龙江省哈尔滨市香坊区林园路4号哈尔滨理工大学南区材料科学与工程学院(150040), E-mail:humaoliang@hrbust.edu.cn
引用本文:   
魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
Shuai-hu WEI, Mao-liang HU, Ze-sheng JI, Hong-yu XU, Ye WANG. Microstructure and mechanical properties of Al2O3/AZ31 composites prepared by multi-pass hot extrusion. Journal of Materials Engineering, 2019, 47(12): 85-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000863      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/85
Al Zn Mn Si Cu Fe Mg
2.80 1.00 0.25 0.06 0.01 0.01 Bal
Table 1  AZ31镁合金化学成分 (质量分数/%)
Fig.1  不同道次热挤压制备Al2O3/AZ31复合材料的金相显微组织
(a)第1道次;(b)第2道次;(c)第3道次;(d)第4道次
Fig.2  不同道次热挤压制备Al2O3/AZ31复合材料的晶粒尺寸分布
(a)第1道次;(b)第2道次;(c)第3道次;(d)第4道次
Fig.3  经过4道次热挤压后Al2O3/AZ31复合材料的SEM图
(a)Al2O3颗粒在AZ31中的分布形貌;(b)图(a)中A区域的放大图;(c)~(f)分别为图(a)的Al, Mg, O, Zn元素分布
Fig.4  经过4道次热挤压后Al2O3/AZ31复合材料的TEM图
(a)Al2O3颗粒附近TEM图;(b)A区域的局部放大图
Fig.5  多道次热挤压制备Al2O3/AZ31复合材料的维氏硬度
Fig.6  多道次热挤压Al2O3/AZ31复合材料的力学性能
Fig.7  经过4道次热挤压后Al2O3/AZ31复合材料的断口形貌
(a)断口形貌;(b)A区域的放大
1 刘军, 张金玲, 渠治波, 等. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46 (6): 73- 79.
1 LIU J , ZHANG J L , QU Z B , et al. Effect of rare earth Gd on corrosion resistance of AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2018, 46 (6): 73- 79.
2 CHELLIAH N M , SINGH H , SURAPPA M K . Processing, microstructural evolution and strength properties of in-situ magnesium matrix composites containing nano-sized polymer derived SiCNO particles[J]. Materials Science and Engineering:A, 2017, 685, 429- 438.
doi: 10.1016/j.msea.2017.01.001
3 常海, 王金龙, 郑明毅, 等. 等通道角变形对搅拌铸造SiCP/AZ91复合材料显微组织与室温性能的影响[J]. 复合材料学报, 2017, 34 (3): 611- 618.
3 CHANG H , WANG J L , ZHENG M Y , et al. Effect of equal channel angular pressing on the microstructure evolution and mechanical property of the SiCP/AZ91 composite fabricated by stir-casting[J]. Acta Materiae Compositae Sinica, 2017, 34 (3): 611- 618.
4 李结木, 邓坤坤. 热处理对颗粒增强镁基复合材料组织与性能的影响[J]. 材料热处理学报, 2012, 33 (9): 29- 32.
4 LI J M , DENG K K . Effect of heat treatment on microstructure and mechanical properties of particle reinforced magnesium matrix composite[J]. Transactions of Materials and Heat Treatment, 2012, 33 (9): 29- 32.
5 KARTHICK E , MATHAI J , TONY J M , et al. Processing, microstructure and mechanical properties of Al2O3 and SiC reinforced magnesium metal matrix hybrid composites[J]. Materials Today Proceedings, 2017, 4 (6): 6750- 6756.
doi: 10.1016/j.matpr.2017.06.451
6 冯艳, 陈超, 彭超群, 等. 镁基复合材料的研究进展[J]. 中国有色金属学报, 2017, 27 (12): 2385- 2407.
6 FENG Y , CHEN C , PENG C Q , et al. Research progress on magnesium matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2017, 27 (12): 2385- 2407.
7 WU K , DENG K K , NIE K B , et al. Microstructure and mechanical properties of SiCp/AZ91 composite deformed through a combination of forging and extrusion process[J]. Materials & Design, 2010, 31 (8): 3929- 3932.
8 PARAMSOTHY M , HASSAN S F , SRIKANTH N , et al. Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles[J]. Materials Science and Engineering:A, 2009, 527 (1/2): 162- 168.
9 XIAO P , GAO Y , YANG C , et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles[J]. Materials Science and Engineering:A, 2018, 710, 251- 259.
doi: 10.1016/j.msea.2017.10.107
10 HABIBNEJAD K M , MAHMUDI R , POOLE W J . Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles[J]. Materials Science and Engineering:A, 2013, 567 (4): 89- 94.
11 SRINIVASAN M , LOGANATHAN C , NARAYANASAMY R , et al. Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map[J]. Materials & Design, 2013, 47, 449- 455.
12 范艳艳, 李秋书, 李亚斐. Al2O3颗粒增强AZ91D镁基复合材料的研究[J]. 中国铸造装备与技术, 2011, (1): 16- 19.
doi: 10.3969/j.issn.1006-9658.2011.01.004
12 FAN Y Y , LI Q S , LI Y F . A study on AZ91D Mg matrix compound materials enforced by Al2O3 particles[J]. China Foundry Machinery & Technology, 2011, (1): 16- 19.
doi: 10.3969/j.issn.1006-9658.2011.01.004
13 WEN L H , JI Z S , LI X L . Effect of extrusion ratio on microstructure and mechanical properties of Mg-Nd-Zn-Zr alloys prepared by a solid recycling process[J]. Materials Characterization, 2008, 59 (11): 1655- 1660.
doi: 10.1016/j.matchar.2008.03.009
14 ZHU Y , HU M L , WANG D J , et al. Microstructure and mechanical properties of AZ31-Ce prepared by multi-pass solid-phase synthesis[J]. Materials Science and Technology, 2018, 34 (7): 876- 884.
doi: 10.1080/02670836.2017.1412008
15 DENG K K , WU K , WANG X J , et al. Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures[J]. Materials Science and Engineering:A, 2010, 527 (6): 1630- 1635.
doi: 10.1016/j.msea.2009.10.053
16 CAVALIERE P , EVANGELISTA E . Isothermal forging of metal matrix composites:recrystallization behaviour by means of deformation efficiency[J]. Composites Science and Technology, 2006, 66 (2): 357- 362.
doi: 10.1016/j.compscitech.2005.04.047
17 何广进, 李文珍. 纳米颗粒分布对镁基复合材料强化机制的影响[J]. 复合材料学报, 2013, 30 (2): 105- 110.
17 HE G J , LI W Z . Influence of nano particle distribution on the strengthening mechanisms of magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30 (2): 105- 110.
18 PARAMSOTHY M , CHAN J , KWOK R , et al. The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91[J]. Journal of Alloys and Compounds, 2011, 509 (28): 7572- 7578.
doi: 10.1016/j.jallcom.2011.04.120
19 HASSAN S F , PARAMSOTHY M , PATEL F , et al. High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites[J]. Materials Science and Engineering:A, 2012, 558, 278- 284.
doi: 10.1016/j.msea.2012.08.002
20 ALAM M E , HAMOUDA A M S , NGUYEN Q B , et al. Improving microstructural and mechanical response of new AZ41 and AZ51 magnesium alloys through simultaneous addition of nano-sized Al2O3 particulates and Ca[J]. Journal of Alloys and Compounds, 2013, 574, 565- 572.
doi: 10.1016/j.jallcom.2013.04.207
21 KOIKE J . Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J]. Metallurgical and Materials Transactions A, 2005, 36 (7): 1689- 1696.
doi: 10.1007/s11661-005-0032-4
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn