Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 145-150    DOI: 10.11868/j.issn.1001-4381.2018.000875
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高温ITO薄膜应变计制备及压阻性能
杨伸勇1, 张丛春1, 杨卓青1, 李红芳1, 姚锦元1, 黄漫国2, 汪红1, 丁桂甫1
1. 上海交通大学 微米/纳米加工技术国家级重点实验室, 上海 200240;
2. 中国航空工业集团公司北京长城航空测控技术研究所, 北京 101111
Fabrication and piezoresistance of high temperature ITO thin film strain gauge
YANG Shen-yong1, ZHANG Cong-chun1, YANG Zhuo-qing1, LI Hong-fang1, YAO Jin-yuan1, HUANG Man-guo2, WANG Hong1, DING Gui-fu1
1. National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China;
2. AVIC Beijing Changcheng Aeronautical Measurement and Control Technology Research Institute, Beijing 101111, China
全文: PDF(2769 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 高温薄膜应变计被广泛应用于极端条件热端构件的应变测量。ITO薄膜应变计通常能够应用于1000℃以上的应变测量,为了研究ITO薄膜的显微结构、XPS光谱、阻温特性及压阻响应,采用磁控溅射在陶瓷基底上制备了ITO薄膜应变计,并在高温纯N2中热处理ITO薄膜。结果表明,其电阻温度系数稳定在-750×10-6-1,在1200℃下测试其应变特性,测得电阻漂移率为0.0018 h-1,应变因子为16。ITO薄膜在高温下具有稳定的电阻温度系数和低漂移率,为高温端部件应变的测量提供了可能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨伸勇
张丛春
杨卓青
李红芳
姚锦元
黄漫国
汪红
丁桂甫
关键词 ITO薄膜应变计热处理高温应变测量电阻温度系数    
Abstract:High temperature thin film strain gauges are widely used in the strain measurement of extreme conditions, especially in the high temperature components. ITO thin film strain gauges can generally be applied to the strain measurements above 1000℃. ITO high temperature thin film strain gauge was fabricated on the ceramic substrate using magnetron sputtering, and then was thermal treated at high temperature in pure N2 atmosphere, with the purpose of studying its microstructure, XPS, temperature resistance characteristics and piezoresistive response. The results show that the temperature coefficient of resistance (TCR) of ITO thin film strain gauge can stabilize at -750×10-6-1. In addition, ITO thin film strain gauge is loaded at 1200℃, and the results show that the drift rate is 0.0018 h-1 and the strain factor is 16. Stable TCR and low drift rate of ITO thin film strain gauge provide the possibility for its application in the strain measurement of the hot end components.
Key wordsITO thin film strain gauge    heat treatment    high temperature strain measurement    temperature coefficient of resistance
收稿日期: 2018-07-19      出版日期: 2020-04-23
中图分类号:  V241.7  
  TN389  
通讯作者: 张丛春(1973-),女,副教授,博士,研究方向为MEMS器件及其微细加工技术,联系地址:上海市东川路800号上海交通大学微米/纳米加工技术国家级重点实验室(200240),E-mail:zhcc@sjtu.edu.cn     E-mail: zhcc@sjtu.edu.cn
引用本文:   
杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
YANG Shen-yong, ZHANG Cong-chun, YANG Zhuo-qing, LI Hong-fang, YAO Jin-yuan, HUANG Man-guo, WANG Hong, DING Gui-fu. Fabrication and piezoresistance of high temperature ITO thin film strain gauge. Journal of Materials Engineering, 2020, 48(4): 145-150.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000875      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/145
[1] ALLAN J V. Gas turbine engine health management:past, present, and future trends[J]. J Eng Gas Turbines Power, 2014, 136(1):1-20.
[2] SUKHINETS Z A, SUKHINETS A V, GULIN A I. Features of the use of jet-acoustic sensors for dynamic measurements of gas temperature in gas turbine engines[C]//2017 IEEE East-West Design & Test Symposium (EWDTS). Novi Sad, Serbia:IEEE, 2017:1-4.
[3] POLLAK R, LAMBROS J. Special issue on strain measurement in extreme environments[J]. J Strain Anal Eng, 2014, 49(4):202-203.
[4] PINT B A. Critical assessment 4:challenges in developing high temperature materials[J]. Mater Sci Tech, 2014, 30(12):1387-1391.
[5] CUNZEMAN K, SCHUBERT P. Survey of ultrahigh temperature materials for applications above 2000 K[C]//AIAA Space 2009 Conference and Exposition. Pasadena CA:AIAA, 2009:14-17.
[6] LEI J F, WILL H A. Thin-film thermocouples and strain-gauge technologies for engine applications[J]. Sens Actuators:A, 1998, 65(2/3):187-193.
[7] MA L C, WU T T, ZHAO L B. Development of temperature compensated resistance strain gages for use to 800℃[J]. Exp Mech, 1990, 30(1):17-19.
[8] KAZI I H, WILD P M, MOORE T N, et al. Characterization of sputtered nichrome (Ni-Cr 80/20wt.%) films for strain gauge applications[J]. Thin Solid Films, 2006, 515(4):2602-2606.
[9] OTTO J G. Ceramic strain gages for use at temperatures up to 1500℃[R]//NASA/CR, 212189, National Aeronautics and Space Administration, Glenn Research Center, 2003.
[10] OTTO J G, TAO Y. Ceramic temperature sensors for harsh environments[J]. IEEE Sens J, 2005, 5(5):833-838.
[11] DAS R, ADHIKARY K, RAY S. The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive RF magnetron sputtering[J]. Appl Surf Sci, 2007, 253(14):6068-6073.
[12] CULLITY B D. Elements of X-ray diffraction[M]. 2nd ed. California:Addison Wesley Publishing Company INC, 1978.
[13] MARCEL H, MARIA K, GERNOT E, et al. Effect of annealing on the properties of indium tin oxynitride films as ohmic contacts for GaN-based optoelectronic devices[J]. ACS Appl Mater Interfaces, 2009, 1(7):1451-1456.
[14] WANG X, LI B, RUSSO O L, et al. Diaphragm design guidelines and an optical pressure sensor based on MEMS technique[J]. Microelectron J, 2006, 37(1):50-56.
[15] OTTO J G, TAO Y. Piezoresistive properties of ITO strain sensors prepared with controlled nanoporosity[J]. J Electro-chem Soc, 2004,151(8):198-203.
[16] RASIA L A, MANSANO R D, DAMIANI L R, et al. Piezo-resistive response of ITO films deposited at room temperature by magnetron sputtering[J]. J Mater Sci, 2010, 45(15):4224-4228.
[17] SHIGESATO Y, TAKAKI S, HARANOH T. Electrical and structural properties of low resistivity tin doped indium oxide films[J]. J Appl Phys, 1992, 71(7):3356-3364.
[18] ISHIBASHI S, HIGUCHI Y, OTA Y, et al. Low resistivity indium tin oxide transparent conductive films Ⅱ effect of sputtering voltage on electrical property of films[J]. J Vac Sci Technol, 1990, 3(8):1403-1406.
[19] MASON T O, GONZALEZ G B, HWANG J H, et al. Point defects and related properties of highly codoped bixbyite In2O3[J]. Phys Chem, 2003, 5(11):2183-2189.
[20] YANG S Y, ZHANG C C, CHANG X Y, et al. Effect of heat treatment atmosphere on the piezoresistivity of indium tin oxide ceramic strain sensor[J]. Ceram Int, 2019, 45(14):17048-17053.
[21] GHEIDARI A M, BEHAFARID F, KAVEI G, et al. Effect of sputtering pressure and annealing temperature on the properties of indium tin oxide thin films[J]. Mater Sci Eng:B, 2007, 136(1):37-40.
[22] KIMA H, GILMORE C M. Electrical, optical, and structural properties of indium tin oxide thin films for organic light emitting devices[J]. J Appl Phys, 1999, 11(86):6451-6461.
[23] YANG S Y, ZHANG C C, YANG Z Q, et al. Effect of nitrogen doping temperature on the resistance stability of ITO thin films[J]. J Alloy Compd, 2019, 778:90-96.
[24] TAO K, TANG L H, WU J, et al. Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity[J]. J Microelectromech Syst, 2018, 27(2):276-288.
[1] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[2] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[3] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[4] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[5] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[6] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[7] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[8] 余煜玺, 马锐, 王贯春, 张瑞谦, 彭小明. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12): 136-142.
[9] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[10] 蔡建明, 田丰, 刘东, 李娟, 弭光宝, 叶俊青. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5): 36-43.
[11] 徐勇, 靳鹏飞, 田亚强, 张士宏, 王礼良, 曾一畔. 铝合金局部热处理技术及其在板材成形中的应用发展现状[J]. 材料工程, 2018, 46(5): 44-55.
[12] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[13] 杨守杰, 邢清源, 于海军, 王玉灵, 戴圣龙. 800MPa级Al-Zn-Mg-Cu系合金[J]. 材料工程, 2018, 46(4): 82-90.
[14] 邢如飞, 许星元, 黄双君, 王磊, 周松, 许良. 激光沉积修复TA15钛合金微观组织及力学性能[J]. 材料工程, 2018, 46(12): 144-150.
[15] 郭瑞华, 李振亮, 李慧琴, 樊易, 刘玉乾. 热处理对Mg-5Sm-0.6Zn-0.5Zr合金微观结构与力学性能的影响[J]. 材料工程, 2018, 46(11): 125-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn