Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (7): 1-10    DOI: 10.11868/j.issn.1001-4381.2018.000876
  综述 本期目录 | 过刊浏览 | 高级检索 |
相变储能材料及其应用研究进展
陈颖, 姜庆辉, 辛集武, 李鑫, 孙兵杨, 杨君友()
华中科技大学 材料科学与工程学院, 武汉 430074
Research status and application of phase change materials
Ying CHEN, Qing-hui JIANG, Ji-wu XIN, Xin LI, Bing-yang SUN, Jun-you YANG()
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(3577 KB)   HTML ( 31 )  
输出: BibTeX | EndNote (RIS)      
摘要 

人类在面临化石能源枯竭的同时,对能量的利用率依然还停留在较低的水平。因此,在大力发展新能源的同时,着力研发节能环保新材料新技术具有十分重要的意义。相变材料(phase-change materials,PCM)是一种节能环保的储能材料,它在蓄热与温控等领域具有大规模商业应用的潜力。本文首先对相变储能材料的基本特征、工作原理以及分类等方面作了简要的介绍;并就相变储能材料在温控与蓄热等领域的应用与发展情况进行了具体的分析,指出了PCM的性能是制约其深入广泛应用的主要技术障碍。在此基础上,详细评述了PCM存在的主要问题以及针对这些问题开展的相关研究工作和最新发展动态,指出通过功能复合等新技术优化材料性能、设计新材料体系、拓展新的应用领域将是相变储能材料未来的主要发展方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈颖
姜庆辉
辛集武
李鑫
孙兵杨
杨君友
关键词 相变材料相变储能热管理蓄热节能    
Abstract

Currently, the utilization efficiency of energy still remains at a low level, although the depletion of fossil fuel is appoaching. Therefore, it is of great significance to develop new materials and technologies for energy-saving and environment protection. Phase-change materials (PCM), which can absorb or release heat through inversible phase change, are very promising in the fields of heat storage and thermal management. In this paper, the characteristics and classification of PCM were introduced briefly in the first section, and then the application and development status of PCM were reviewed and analyzed detailedly. In the third part, the main problems of PCM were pointed out, and the related research work and recent research progress were analyzed and discussed. Finally, it was pointed out that optimizing material properties through new functional composite technology, designing new material system, expanding new application fields are the main development directions of phase change energy storage materials.

Key wordsphase change material    phase change energy storage    thermal management    heat storage    energy efficiency
收稿日期: 2018-07-19      出版日期: 2019-07-19
中图分类号:  TK11  
基金资助:国家自然科学基金面上项目(51872102)
通讯作者: 杨君友     E-mail: jyyang@hust.edu.cn
作者简介: 杨君友(1969-),男,博士,教授,研究方向:热电材料及其器件、太阳能电池、新能源材料,联系地址:湖北省武汉市珞瑜路1037号华中科技大学材料科学与工程学院(430074),E-mail: jyyang@hust.edu.cn
引用本文:   
陈颖, 姜庆辉, 辛集武, 李鑫, 孙兵杨, 杨君友. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10.
Ying CHEN, Qing-hui JIANG, Ji-wu XIN, Xin LI, Bing-yang SUN, Jun-you YANG. Research status and application of phase change materials. Journal of Materials Engineering, 2019, 47(7): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000876      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/1
Fig.1  物理相变原理图
Fig.2  化学相变原理图
SpeciesNameMelting point/℃Latent heat/(J·g-1)Property
InorganicCaCl·6H2O25.8125.9High latent heat and thermal conductivity,
low thermal expansion, non-inflammable,
non-toxic, corrosive, poor invertibility,
obvious phase supercooling
H3PO426147
LiNO3·2H2O30296.8
LiNO3·3H2O30189
NaSO4·10H2O32.4257
NaS2O3·5H2O48.5210
Ba(OH)2·8H2O78264
NaNO3307172
MgCl2714452
MgF21263938
OrganicParaffinC18H3828243High latent heat, low thermal conductivity,
good stability, no-corrosion, good
invertibility, not obvious supercooling
C22H4644.4249
C26H5456.1256
C3H8O326184
C17H34O229205
C12H24O243177
C18H38O57242.85
Table 1  常见相变材料的分类[15-19]
Fig.3  热管工作原理
Fig.4  均热板结构图
Fig.5  复合相变材料热管理[31]
Fig.6  太阳能蓄热装置[35]
Fig.7  热导率提高原理图
DateTechnologyThermal conductivity
of matrix material/
(W·m-1·K-1)
Thermal conductivity
of composites/
(W·m-1·K-1)
TimesRef.
201351.7% graphene oxide compound paraffin0.2870.9323.2[44]
201420%EG compound paraffin0.2545180[45]
2015Aluminum with a porosity of 78.95% compound paraffin0.2946.12159[41]
20160.69% carbon fiber with paraffin0.21-2[46]
2018Porous nickel with graphene deposited on the inner wallof paraffin composition0.194.624.2[47]
20182.5% graphene nanoplate composite of Ba(HO)2·8H2O0.6182.0773.361[43]
20180.3% carbon nanotubes and 0.7%EG0.320.872.124[48]
201826.4% carbonized wood composite of 1-tetradecyl alcohol0.312(50℃)0.669(50℃)2.114[42]
201810% Co3O4/EG composite stearic acid0.332.537.67[49]
Table 2  相变复合材料热导率研究进展
Fig.8  多孔膨胀石墨
Fig.9  石蜡膨胀石墨复合材料
Fig.10  微胶囊相变材料[53]
Fig.11  相变延迟
Fig.12  相分离
Fig.13  导热粒子下沉[57]
1 马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015-2050):可再生能源发展与可行路径[J]. 中国人口·资源与环境, 2018, 28 (2): 8- 18.
1 MA L M , SHI D , PEI Q B . Low-carbon transformation of China's energy in 2015-2050:renewable energy development and feasible path[J]. China Population, Resources and Environment, 2018, 28 (2): 8- 18.
2 任杰锶, 董小瑞, 张鹏程, 等. 基于热管技术的柴油机燃油加热系统性能分析[J]. 内燃机工程, 2018, 39 (1): 56- 62.
2 REN J S , DONG X R , ZHANG P C , et al. Performance analysis of the diesel engine fuel heating system based on heat pipe technology[J]. Chinese Internal Combustion Engine Engineering, 2018, 39 (1): 56- 62.
3 王生刚. 火力发电厂能量损耗及节能措施[J]. 电子测试, 2017, 13, 101- 102.
3 WANG S G . Energy loss and energy saving measures in thermal power plants[J]. Electronic Test, 2017, 13, 101- 102.
4 MIAO C L , FANG D B , SUN L Y , et al. Driving effect of tech-nology innovation on energy utilization efficiency in strategic emerging industries[J]. Journal of Cleaner Production, 2018, 170, 1177- 1184.
doi: 10.1016/j.jclepro.2017.09.225
5 STEPHANE R C , PUDLEINER D , PIELLI K . Energy efficien-cy as a means to expand energy access:a Uganda roadmap[J]. Energy Policy, 2018, 120, 354- 364.
doi: 10.1016/j.enpol.2018.05.045
6 VEERAKUMAR C , SREEKUMAR A . Phase change material based cold thermal energy storage:materials, techniques and applications-a review[J]. International Journal of Refrigeration, 2016, 67, 271- 289.
doi: 10.1016/j.ijrefrig.2015.12.005
7 MOHAMED H K , MOHAMED E M , OSAMA S , et al. An experimental evaluation of direct flow evacuated tube solar coll-ector integrated with phase change material[J]. Energy, 2017, 139, 1111- 1125.
doi: 10.1016/j.energy.2017.08.034
8 ZHANG Q N , HUO Y T , RAO Z H . Numerical study on solid-liquid phase change in paraffin as phase change material for batt-ery thermal management[J]. Science Bulletin, 2016, 61 (5): 391- 400.
doi: 10.1007/s11434-016-1016-z
9 AN Z J , JIA L , DING Y , et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of Thermal Science, 2017, 26 (5): 391- 412.
doi: 10.1007/s11630-017-0955-2
10 饶中浩, 汪双凤, 张艳来, 等. 相变材料热物理性质的分子动力学模拟[J]. 物理学报, 2013, 62 (5): 331- 336.
10 RAO Z H , WANG S F , ZHANG Y L , et al. Molecular dyn-amics simulation of thermal physical properties of phase transition materials[J]. Acta Physica Sinica, 2013, 62 (5): 331- 336.
11 孙小琴. 相变材料蓄放热机理及其基站冷却的能效研究[D]. 长沙: 湖南大学, 2014.
11 SUN X Q. Study on heat storage and release mechanism of phase-change materials and energy efficiency of base station cooling[D]. Changsha: Hunan University, 2014.
12 ZALBA B , MARIN J M , CABEZA L F , et al. Review on the-rmal energy storage with phase change:materials, heat transfer analysis and application[J]. Applied Thermal Enginering, 2003, 23, 251- 283.
doi: 10.1016/S1359-4311(02)00192-8
13 SHARMA A , TYAGI V V , CHEN C R , et al. Review on thermal energy storage with phase change materials and appli-cations[J]. Renewable and Sustainable Energy Reviews, 2009, 13, 318- 345.
doi: 10.1016/j.rser.2007.10.005
14 WEI G S , WANG G , XU C , et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage:a review[J]. Renewable and Sustainable Energy Reviews, 2017, 81 (2): 1771- 1786.
15 袁亚光, 袁艳平, 张楠, 等. 月桂酸-棕榈酸-硬脂酸/膨胀石墨复合相变材料的制备及性能[J]. 化工学报, 2014, 65 (增刊2): 286- 292.
15 YUAN Y G , YUAN Y P , ZHANG N , et al. Preparation and properties of lauric acid-palmitate-stearic acid/expanded graphite composite phase transition materials[J]. Journal of Chemical Industry and Engineering, 2014, 65 (Suppl 2): 286- 292.
16 黄金, 柯秀芳. 无机水合盐相变材料Na2SO4·10H2O的研究进展[J]. 材料导报, 2008, 22 (3): 63- 67.
doi: 10.3321/j.issn:1005-023X.2008.03.016
16 HUANG J , KE X F . Research progress of inorganic hydrate phase transition material Na2SO4·10H2O[J]. Materials Revi-ew, 2008, 22 (3): 63- 67.
doi: 10.3321/j.issn:1005-023X.2008.03.016
17 任迎蕾, 纪珺, 章学来, 等. 八水合氢氧化钡复合相变材料的制备及热力学性能研究[J]. 材料导报, 2016, 30 (增刊2): 194- 197.
17 REN Y L , JI J , ZHANG X L , et al. Preparation and therm-odynamic properties of barium hydroxide composite phase tran-sition materials with octahydrate[J]. Materials Review, 2016, 30 (Suppl 2): 194- 197.
18 苑坤杰, 张正国, 方晓明, 等. 水合无机盐及其复合相变储热材料的研究进展[J]. 化工进展, 2016, 35 (6): 1820- 1826.
18 YUAN K J , ZHANG Z G , FANG X M , et al. Research prog-ress of hydrated inorganic salt and its composite phase change heat storage materials[J]. Chemical Progress, 2016, 35 (6): 1820- 1826.
19 盛强, 邢玉明. Ba(OH)2·8H2O/泡沫铜相变复合材料的制备及传热性能[J]. 复合材料学报, 2014, 31 (6): 1566- 1572.
19 SHENG Q , XING Y M . Preparation and heat transfer prop-erties of Ba(OH)2·8H2O/foamed copper phase transition composites[J]. Acta Materiae Compositae Sinica, 2014, 31 (6): 1566- 1572.
20 RAO Z , QIAN Z , KUANG Y , et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123, 1514- 1522.
doi: 10.1016/j.applthermaleng.2017.06.059
21 ZHAO R , GU J , LIU J . Optimization of a phase change mat-erial based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design[J]. Energy, 2017, 135, 811- 822.
doi: 10.1016/j.energy.2017.06.168
22 LIU Z , WANG Y , ZHANG J , et al. Short cut computation for the thermal management of a large air-cooled battery pack[J]. Applied Thermal Engineering, 2014, 6 (1/2): 45- 452.
23 彭毅. 基于植物叶片结构的仿生均热板研究[D]. 广州: 华南理工大学, 2015.
23 PENG Y. Study on bionic heat equalizer based on plant leaf structure[D]. Guangzhou: South China University of Techn-ology, 2015.
24 YAN J , WANG Q , LI K , et al. Numerical study on the thermal performance of a composite board in battery thermal management system[J]. Applied Thermal Engineering, 2016, 106, 131- 140.
doi: 10.1016/j.applthermaleng.2016.05.187
25 MAO D L , PENG L . Simulation analysis of battery thermal management system using phase change material (PCM)[J]. Applied Mechanics and Materials, 2013, 2755 (433): 2107- 2112.
26 RAMANDI M Y , DINCER I , NATERER G F . Heat transfer and thermal management of electric vehicle batteries with phase change materials[J]. Heat and Mass Transfer, 2011, 47 (7): 777- 788.
doi: 10.1007/s00231-011-0766-z
27 YAN J , LI K , CHEN H , et al. Experimental study on the application of phase change material in the dynamic cycling of battery pack system[J]. Energy Conversion and Management, 2016, 128, 12- 19.
doi: 10.1016/j.enconman.2016.09.058
28 凌子夜. 基于膨胀石墨基复合相变材料的动力电池热管理系统性能研究[D]. 广州: 华南理工大学, 2016.
28 LING Z Y. Study on the performance of thermal management system for power cells based on expanded graphite-based composite phase transition materials[D]. Guangzhou: South China University of Technology, 2016.
29 WU W , YANG X , ZHANG G , et al. Experimental investig-ation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management, 2017, 138, 486- 492.
doi: 10.1016/j.enconman.2017.02.022
30 NOUIRA M , SAMMOUDA H . Numerical study of an inclined photovoltaic system coupled with phase change material under various operating conditions[J]. Applied Thermal Engineering, 2018, 141, 958- 975.
doi: 10.1016/j.applthermaleng.2018.06.039
31 严佳佳. 基于相变散热的动力电池热管理系统研究[D]. 合肥: 中国科学技术大学, 2017.
31 YAN J J. Study on thermal management system of power battery based on phase-change heat dissipation[D]. Hefei: China University of Science and Technology, 2017.
32 李胜, 刘立磊, 王宇彤, 等. 基于复合相变材料的室内自调温系统设计[J]. 新型建筑材料, 2018, 45 (2): 83- 87.
doi: 10.3969/j.issn.1001-702X.2018.02.022
32 LI S , LIU L L , WANG Y T , et al. Design of indoor self-tempering system based on composite phase transition materials[J]. New Building Materials, 2018, 45 (2): 83- 87.
doi: 10.3969/j.issn.1001-702X.2018.02.022
33 BOUSSABA L , MAKHLOUF S , FOUFA A A . Experimenta-tion of a novel composite phase change material for thermal comfort improvement and energy saving in buildings[J]. Journal of Building Materials and Structures, 2018, 5 (1): 43- 54.
34 PITI S , TIDARAT S , WONCHALERM C , et al. Improving thermal properties of exterior plastering mortars with phase change materials with different melting temperatures:paraffin and polyethylene glycol[J]. Advances in Building Energy Research, 2018, 1- 12.
35 GIANLUCA C , GIOVANNI D N , SEBASTIANO T , et al. Ex-perimental validation of a high-temperature solar box cooker with a solar-salt-based thermal storage unit[J]. Solar Energy, 2018, 170, 1016- 1025.
doi: 10.1016/j.solener.2018.06.021
36 MOHAMMAD R K , EHSAN B , MEHDI M D . Numerical ana-lysis of a new thermal energy storage system using phase change materials for direct steam parabolic trough solar power plants[J]. Solar Energy, 2018, 170, 594- 605.
doi: 10.1016/j.solener.2018.06.024
37 魏高升, 邢丽婧, 杜小泽, 等. 太阳能热发电系统相变储热材料选择及研发现状[J]. 中国电机工程学报, 2014, 34 (3): 325- 335.
37 WEI G S , XING L J , DU X Z , et al. Selection and research and development status of phase change heat storage materials for solar thermal power generation system[J]. China Journal of Electrical Engineering, 2014, 34 (3): 325- 335.
38 金翼, 冷光辉, 叶锋, 等. 中高温相变储热技术在工业余热回收中的应用[C]//上海: 第一届全国储能科学与技术大会摘要集, 2014: 1.
38 JIN Y, LENG G H, YE F, et al. Application of medium-high temperature phase change heat storage technology in industrial waste heat recovery[C]//Shanghai: Summary of the First National Energy Storage Science and Technology Conference, 2014: 1.
39 ZHANG Z , ZHANG N , PENG J , et al. Preparation and ther-mal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Applied Energy, 2012, 91, 426- 431.
doi: 10.1016/j.apenergy.2011.10.014
40 WU W , ZHANG G Q , KE X , et al. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management[J]. Energy Conversion and Management, 2015, 101, 278- 284.
doi: 10.1016/j.enconman.2015.05.050
41 WANG Z , ZHANG Z , LI J , YANG L . Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78, 428- 436.
doi: 10.1016/j.applthermaleng.2015.01.009
42 YANG H , WANG Y , YU Q . Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage[J]. Energy, 2018, 159, 929- 936.
doi: 10.1016/j.energy.2018.06.207
43 CUI K X , LIU L Q , MA F K . Enhancement of thermal conductivity of Ba(OH)2·8H2O phase change material by graphene nanoplatelets[J]. Materials Research Express, 2018, 5 (6): 065522.
doi: 10.1088/2053-1591/aacc7d
44 MEHRALI M , TAHAN S L , SIMON H , et al. Shape-stabil-ized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J]. Energy Conversion and Management, 2013, 67, 275- 282.
doi: 10.1016/j.enconman.2012.11.023
45 GOLI P , LEGEDZA S , DHAR A , et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources, 2014, 248, 37- 43.
doi: 10.1016/j.jpowsour.2013.08.135
46 SAMIMI F , BABAPOOR A , AZIZI M , et al. Thermal manag-ement analysis of a Li-ion battery cell using phase change material loaded with carbon fibers[J]. Energy, 2016, 96, 355- 371.
doi: 10.1016/j.energy.2015.12.064
47 HUSSAIN A , ABIDI I H , TSO C Y , et al. Thermal manag-ement of lithium ion batteries using graphene coated nickel foam saturated with phase change materials[J]. International Journal of Thermal Sciences, 2018, 124, 23- 35.
doi: 10.1016/j.ijthermalsci.2017.09.019
48 ZOU D , MA X , LIU X , et al. Thermal performance enhan-cement of composite phase change materials (PCM) using grap-hene and carbon nanotubes as additives for the potential appli-cation in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120, 33- 41.
doi: 10.1016/j.ijheatmasstransfer.2017.12.024
49 LI D , CHENG X M , LI Y Y , et al. Effect of MOF derived hierarchical Co3O/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171, 142- 149.
doi: 10.1016/j.solener.2018.06.062
50 BABAPOOR A , AZIZI M , KARIMI G . Thermal management of a Li-ion battery using carbon-fiber-PCM composites[J]. App-lied Thermal Engineering, 2015, 82, 281- 290.
doi: 10.1016/j.applthermaleng.2015.02.068
51 LV Y , YANG X , LI X , et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins[J]. Applied Energy, 2016, 178, 376- 382.
doi: 10.1016/j.apenergy.2016.06.058
52 LI J , HUANG J , CAO M . Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries[J]. Applied Thermal Engineering, 2018, 131, 660- 668.
doi: 10.1016/j.applthermaleng.2017.12.023
53 LIU C , RAO Z , ZHAO J , et al. Review on nanoencapsulated phase change materials:preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13, 814- 816.
doi: 10.1016/j.nanoen.2015.02.016
54 SANA A , ALKAN C , BILGIN C , et al. Preparation charac-terization and thermal energy storage properties of micro/nano encapsulated phase change material with acrylic-based polymer[J]. Polymer Science, 2018, 1, 58- 68.
55 HARI K S , BUDDHI D . Experimental investigation on CaCl2·6H2O for subcooling behavior and its correction for low temperature thermal energy storage[J]. International Journal of Applied Engineering Research, 2018, 13, 9858- 9867.
56 LING Z Y , LI S M , ZHANG Z G , et al. A shape-stabilized MgCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite com-posite phase change material with high thermal conductivity and stability[J]. Journal of Applied Electrochemistry, 2018, 48 (10): 1131- 1138.
doi: 10.1007/s10800-018-1223-1
57 SAYDAM V , DUAN X . Dispersing different nano-particles in paraffin wax as enhanced phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2018, 135 (2): 1135- 1144.
58 HONG W , ZHANG C T , SUN J , et al. Preparation and rese-arch of waterborne polyurethane phase change material[J]. Integrated Ferroelectrics, 2018, 189, 175- 188.
doi: 10.1080/10584587.2018.1456190
[1] 余煜玺, 贾嫣婷, 黄柳英, 朱建, 丛明辉, 宋经远. 低温SiO2气凝胶基复合相变材料的制备与性能分析[J]. 材料工程, 2022, 50(8): 115-123.
[2] 张浩, 臧君杰, 李海丽, 宗志芳. 相变储湿复合材料及其应用研究进展[J]. 材料工程, 2021, 49(5): 56-65.
[3] 刘鹏, 顾晓滨, 赵媛媛, 饶俊, 边亮. 粉煤灰-硅藻土复合相变储能材料制备及导热强化[J]. 材料工程, 2021, 49(3): 141-150.
[4] 戴远哲, 唐波, 张振宇, 任首龙. 碳纳米管/石蜡相变复合材料研究进展[J]. 材料工程, 2021, 49(12): 91-99.
[5] 武延泽, 王敏, 李锦丽, 赵有璟, 王怀有, 魏明. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1): 10-18.
[6] 孙川, 邱学青, 覃发梅, 丁子先, 方志强. 六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展[J]. 材料工程, 2019, 47(12): 21-32.
[7] 何鹏, 耿慧远. 先进热管理材料研究进展[J]. 材料工程, 2018, 46(4): 1-11.
[8] 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47.
[9] 林森, 孙仕勇, 邹翔, 郭鹏云. 改性蒙脱石/石蜡相变储热微囊的制备与性能表征[J]. 材料工程, 2017, 45(3): 35-40.
[10] 徐永锋, 李明, 罗熙, 余琼粉, 王云峰, 冷从斌. 新型复合相变储能材料Na/Paraffin的制备与性能分析[J]. 材料工程, 2017, 45(11): 66-71.
[11] 冷从斌, 季旭, 罗熙, 李明, 余琼粉, 徐永锋. Na2SO4·10H2O/EG复合相变材料的制备与性能分析[J]. 材料工程, 2017, 45(1): 58-64.
[12] 郝勇敢, 邵先坤, 唐海娣, 汪涛, 刘佳佳, 李本侠. 石蜡/TiO2/活性炭复合相变材料的制备及其性能[J]. 材料工程, 2016, 44(11): 51-55.
[13] 尚建丽, 张浩, 熊磊, 麻向龙. 基于均匀设计优化制备癸酸-棕榈酸/SiO2复合相变材料[J]. 材料工程, 2015, 43(9): 94-102.
[14] 喻胜飞, 罗武生. 石蜡/聚脲相变微胶囊的制备及表征[J]. 材料工程, 2015, 43(7): 100-104.
[15] 刘菁伟, 杨文彬, 谢长琼, 张凯, 范敬辉. HDPE/EG/石蜡导热定形相变材料的制备及性能[J]. 材料工程, 2015, 43(4): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn