Currently, the utilization efficiency of energy still remains at a low level, although the depletion of fossil fuel is appoaching. Therefore, it is of great significance to develop new materials and technologies for energy-saving and environment protection. Phase-change materials (PCM), which can absorb or release heat through inversible phase change, are very promising in the fields of heat storage and thermal management. In this paper, the characteristics and classification of PCM were introduced briefly in the first section, and then the application and development status of PCM were reviewed and analyzed detailedly. In the third part, the main problems of PCM were pointed out, and the related research work and recent research progress were analyzed and discussed. Finally, it was pointed out that optimizing material properties through new functional composite technology, designing new material system, expanding new application fields are the main development directions of phase change energy storage materials.
MA L M , SHI D , PEI Q B . Low-carbon transformation of China's energy in 2015-2050:renewable energy development and feasible path[J]. China Population, Resources and Environment, 2018, 28 (2): 8- 18.
REN J S , DONG X R , ZHANG P C , et al. Performance analysis of the diesel engine fuel heating system based on heat pipe technology[J]. Chinese Internal Combustion Engine Engineering, 2018, 39 (1): 56- 62.
3
王生刚. 火力发电厂能量损耗及节能措施[J]. 电子测试, 2017, 13, 101- 102.
3
WANG S G . Energy loss and energy saving measures in thermal power plants[J]. Electronic Test, 2017, 13, 101- 102.
4
MIAO C L , FANG D B , SUN L Y , et al. Driving effect of tech-nology innovation on energy utilization efficiency in strategic emerging industries[J]. Journal of Cleaner Production, 2018, 170, 1177- 1184.
doi: 10.1016/j.jclepro.2017.09.225
5
STEPHANE R C , PUDLEINER D , PIELLI K . Energy efficien-cy as a means to expand energy access:a Uganda roadmap[J]. Energy Policy, 2018, 120, 354- 364.
doi: 10.1016/j.enpol.2018.05.045
6
VEERAKUMAR C , SREEKUMAR A . Phase change material based cold thermal energy storage:materials, techniques and applications-a review[J]. International Journal of Refrigeration, 2016, 67, 271- 289.
doi: 10.1016/j.ijrefrig.2015.12.005
7
MOHAMED H K , MOHAMED E M , OSAMA S , et al. An experimental evaluation of direct flow evacuated tube solar coll-ector integrated with phase change material[J]. Energy, 2017, 139, 1111- 1125.
doi: 10.1016/j.energy.2017.08.034
8
ZHANG Q N , HUO Y T , RAO Z H . Numerical study on solid-liquid phase change in paraffin as phase change material for batt-ery thermal management[J]. Science Bulletin, 2016, 61 (5): 391- 400.
doi: 10.1007/s11434-016-1016-z
9
AN Z J , JIA L , DING Y , et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of Thermal Science, 2017, 26 (5): 391- 412.
doi: 10.1007/s11630-017-0955-2
RAO Z H , WANG S F , ZHANG Y L , et al. Molecular dyn-amics simulation of thermal physical properties of phase transition materials[J]. Acta Physica Sinica, 2013, 62 (5): 331- 336.
11
孙小琴. 相变材料蓄放热机理及其基站冷却的能效研究[D]. 长沙: 湖南大学, 2014.
11
SUN X Q. Study on heat storage and release mechanism of phase-change materials and energy efficiency of base station cooling[D]. Changsha: Hunan University, 2014.
12
ZALBA B , MARIN J M , CABEZA L F , et al. Review on the-rmal energy storage with phase change:materials, heat transfer analysis and application[J]. Applied Thermal Enginering, 2003, 23, 251- 283.
doi: 10.1016/S1359-4311(02)00192-8
13
SHARMA A , TYAGI V V , CHEN C R , et al. Review on thermal energy storage with phase change materials and appli-cations[J]. Renewable and Sustainable Energy Reviews, 2009, 13, 318- 345.
doi: 10.1016/j.rser.2007.10.005
14
WEI G S , WANG G , XU C , et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage:a review[J]. Renewable and Sustainable Energy Reviews, 2017, 81 (2): 1771- 1786.
YUAN Y G , YUAN Y P , ZHANG N , et al. Preparation and properties of lauric acid-palmitate-stearic acid/expanded graphite composite phase transition materials[J]. Journal of Chemical Industry and Engineering, 2014, 65 (Suppl 2): 286- 292.
HUANG J , KE X F . Research progress of inorganic hydrate phase transition material Na2SO4·10H2O[J]. Materials Revi-ew, 2008, 22 (3): 63- 67.
doi: 10.3321/j.issn:1005-023X.2008.03.016
REN Y L , JI J , ZHANG X L , et al. Preparation and therm-odynamic properties of barium hydroxide composite phase tran-sition materials with octahydrate[J]. Materials Review, 2016, 30 (Suppl 2): 194- 197.
YUAN K J , ZHANG Z G , FANG X M , et al. Research prog-ress of hydrated inorganic salt and its composite phase change heat storage materials[J]. Chemical Progress, 2016, 35 (6): 1820- 1826.
SHENG Q , XING Y M . Preparation and heat transfer prop-erties of Ba(OH)2·8H2O/foamed copper phase transition composites[J]. Acta Materiae Compositae Sinica, 2014, 31 (6): 1566- 1572.
20
RAO Z , QIAN Z , KUANG Y , et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123, 1514- 1522.
doi: 10.1016/j.applthermaleng.2017.06.059
21
ZHAO R , GU J , LIU J . Optimization of a phase change mat-erial based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design[J]. Energy, 2017, 135, 811- 822.
doi: 10.1016/j.energy.2017.06.168
22
LIU Z , WANG Y , ZHANG J , et al. Short cut computation for the thermal management of a large air-cooled battery pack[J]. Applied Thermal Engineering, 2014, 6 (1/2): 45- 452.
23
彭毅. 基于植物叶片结构的仿生均热板研究[D]. 广州: 华南理工大学, 2015.
23
PENG Y. Study on bionic heat equalizer based on plant leaf structure[D]. Guangzhou: South China University of Techn-ology, 2015.
24
YAN J , WANG Q , LI K , et al. Numerical study on the thermal performance of a composite board in battery thermal management system[J]. Applied Thermal Engineering, 2016, 106, 131- 140.
doi: 10.1016/j.applthermaleng.2016.05.187
25
MAO D L , PENG L . Simulation analysis of battery thermal management system using phase change material (PCM)[J]. Applied Mechanics and Materials, 2013, 2755 (433): 2107- 2112.
26
RAMANDI M Y , DINCER I , NATERER G F . Heat transfer and thermal management of electric vehicle batteries with phase change materials[J]. Heat and Mass Transfer, 2011, 47 (7): 777- 788.
doi: 10.1007/s00231-011-0766-z
27
YAN J , LI K , CHEN H , et al. Experimental study on the application of phase change material in the dynamic cycling of battery pack system[J]. Energy Conversion and Management, 2016, 128, 12- 19.
doi: 10.1016/j.enconman.2016.09.058
LING Z Y. Study on the performance of thermal management system for power cells based on expanded graphite-based composite phase transition materials[D]. Guangzhou: South China University of Technology, 2016.
29
WU W , YANG X , ZHANG G , et al. Experimental investig-ation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management, 2017, 138, 486- 492.
doi: 10.1016/j.enconman.2017.02.022
30
NOUIRA M , SAMMOUDA H . Numerical study of an inclined photovoltaic system coupled with phase change material under various operating conditions[J]. Applied Thermal Engineering, 2018, 141, 958- 975.
doi: 10.1016/j.applthermaleng.2018.06.039
31
严佳佳. 基于相变散热的动力电池热管理系统研究[D]. 合肥: 中国科学技术大学, 2017.
31
YAN J J. Study on thermal management system of power battery based on phase-change heat dissipation[D]. Hefei: China University of Science and Technology, 2017.
LI S , LIU L L , WANG Y T , et al. Design of indoor self-tempering system based on composite phase transition materials[J]. New Building Materials, 2018, 45 (2): 83- 87.
doi: 10.3969/j.issn.1001-702X.2018.02.022
33
BOUSSABA L , MAKHLOUF S , FOUFA A A . Experimenta-tion of a novel composite phase change material for thermal comfort improvement and energy saving in buildings[J]. Journal of Building Materials and Structures, 2018, 5 (1): 43- 54.
34
PITI S , TIDARAT S , WONCHALERM C , et al. Improving thermal properties of exterior plastering mortars with phase change materials with different melting temperatures:paraffin and polyethylene glycol[J]. Advances in Building Energy Research, 2018, 1- 12.
35
GIANLUCA C , GIOVANNI D N , SEBASTIANO T , et al. Ex-perimental validation of a high-temperature solar box cooker with a solar-salt-based thermal storage unit[J]. Solar Energy, 2018, 170, 1016- 1025.
doi: 10.1016/j.solener.2018.06.021
36
MOHAMMAD R K , EHSAN B , MEHDI M D . Numerical ana-lysis of a new thermal energy storage system using phase change materials for direct steam parabolic trough solar power plants[J]. Solar Energy, 2018, 170, 594- 605.
doi: 10.1016/j.solener.2018.06.024
WEI G S , XING L J , DU X Z , et al. Selection and research and development status of phase change heat storage materials for solar thermal power generation system[J]. China Journal of Electrical Engineering, 2014, 34 (3): 325- 335.
JIN Y, LENG G H, YE F, et al. Application of medium-high temperature phase change heat storage technology in industrial waste heat recovery[C]//Shanghai: Summary of the First National Energy Storage Science and Technology Conference, 2014: 1.
39
ZHANG Z , ZHANG N , PENG J , et al. Preparation and ther-mal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Applied Energy, 2012, 91, 426- 431.
doi: 10.1016/j.apenergy.2011.10.014
40
WU W , ZHANG G Q , KE X , et al. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management[J]. Energy Conversion and Management, 2015, 101, 278- 284.
doi: 10.1016/j.enconman.2015.05.050
41
WANG Z , ZHANG Z , LI J , YANG L . Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78, 428- 436.
doi: 10.1016/j.applthermaleng.2015.01.009
42
YANG H , WANG Y , YU Q . Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage[J]. Energy, 2018, 159, 929- 936.
doi: 10.1016/j.energy.2018.06.207
43
CUI K X , LIU L Q , MA F K . Enhancement of thermal conductivity of Ba(OH)2·8H2O phase change material by graphene nanoplatelets[J]. Materials Research Express, 2018, 5 (6): 065522.
doi: 10.1088/2053-1591/aacc7d
44
MEHRALI M , TAHAN S L , SIMON H , et al. Shape-stabil-ized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J]. Energy Conversion and Management, 2013, 67, 275- 282.
doi: 10.1016/j.enconman.2012.11.023
45
GOLI P , LEGEDZA S , DHAR A , et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources, 2014, 248, 37- 43.
doi: 10.1016/j.jpowsour.2013.08.135
46
SAMIMI F , BABAPOOR A , AZIZI M , et al. Thermal manag-ement analysis of a Li-ion battery cell using phase change material loaded with carbon fibers[J]. Energy, 2016, 96, 355- 371.
doi: 10.1016/j.energy.2015.12.064
47
HUSSAIN A , ABIDI I H , TSO C Y , et al. Thermal manag-ement of lithium ion batteries using graphene coated nickel foam saturated with phase change materials[J]. International Journal of Thermal Sciences, 2018, 124, 23- 35.
doi: 10.1016/j.ijthermalsci.2017.09.019
48
ZOU D , MA X , LIU X , et al. Thermal performance enhan-cement of composite phase change materials (PCM) using grap-hene and carbon nanotubes as additives for the potential appli-cation in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120, 33- 41.
doi: 10.1016/j.ijheatmasstransfer.2017.12.024
49
LI D , CHENG X M , LI Y Y , et al. Effect of MOF derived hierarchical Co3O/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171, 142- 149.
doi: 10.1016/j.solener.2018.06.062
50
BABAPOOR A , AZIZI M , KARIMI G . Thermal management of a Li-ion battery using carbon-fiber-PCM composites[J]. App-lied Thermal Engineering, 2015, 82, 281- 290.
doi: 10.1016/j.applthermaleng.2015.02.068
51
LV Y , YANG X , LI X , et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins[J]. Applied Energy, 2016, 178, 376- 382.
doi: 10.1016/j.apenergy.2016.06.058
52
LI J , HUANG J , CAO M . Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries[J]. Applied Thermal Engineering, 2018, 131, 660- 668.
doi: 10.1016/j.applthermaleng.2017.12.023
53
LIU C , RAO Z , ZHAO J , et al. Review on nanoencapsulated phase change materials:preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13, 814- 816.
doi: 10.1016/j.nanoen.2015.02.016
54
SANA A , ALKAN C , BILGIN C , et al. Preparation charac-terization and thermal energy storage properties of micro/nano encapsulated phase change material with acrylic-based polymer[J]. Polymer Science, 2018, 1, 58- 68.
55
HARI K S , BUDDHI D . Experimental investigation on CaCl2·6H2O for subcooling behavior and its correction for low temperature thermal energy storage[J]. International Journal of Applied Engineering Research, 2018, 13, 9858- 9867.
56
LING Z Y , LI S M , ZHANG Z G , et al. A shape-stabilized MgCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite com-posite phase change material with high thermal conductivity and stability[J]. Journal of Applied Electrochemistry, 2018, 48 (10): 1131- 1138.
doi: 10.1007/s10800-018-1223-1
57
SAYDAM V , DUAN X . Dispersing different nano-particles in paraffin wax as enhanced phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2018, 135 (2): 1135- 1144.
58
HONG W , ZHANG C T , SUN J , et al. Preparation and rese-arch of waterborne polyurethane phase change material[J]. Integrated Ferroelectrics, 2018, 189, 175- 188.
doi: 10.1080/10584587.2018.1456190