Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 92-97    DOI: 10.11868/j.issn.1001-4381.2018.000893
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
镍基Ni-Ag复合纳米粒子直流电弧等离子体法制备及其烧结电学性能
王子明, 王东星, 陆姗姗, 王鑫, 董星龙
大连理工大学 材料科学与工程学院 三束材料改性教育部重点实验室, 辽宁 大连 116024
Preparation of nickel-based Ni-Ag composite nanoparticles synthesized by DC arc-discharge plasma method and its sintering electrical properties
WANG Zi-ming, WANG Dong-xing, LU Shan-shan, WANG Xin, DONG Xing-long
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(1867 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用直流电弧等离子体法,在氢/氩气氛下蒸发高Ni含量的Ni-Ag块体靶材,获得以Ni为主相的复合纳米粉体产物,Ni和Ag元素之间形成各自固溶体相,其中Ni含量为70.54%(质量分数),纳米粒子产物平均尺寸在30~70 nm范围。将纳米粉体压制成片,其室温电学性能测试结果表明:25 MPa压力下的样品电阻率为5.36×10-5 Ω·cm。利用纳米粉体作为导电组分,配制成液态导电墨水,在聚酰亚胺薄膜基体上绘制导电线路,在Ar气氛下完成烧结处理。烧结样品电学性能测试结果表明:在300℃以上温度,烧结体结构致密,导电性能良好。随温度提高,烧结样品的电阻率逐渐下降,450℃时烧结体的电阻率达1.83×10-3 Ω·cm,明显优于纯Ni纳米粉体墨水的烧结体电阻率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王子明
王东星
陆姗姗
王鑫
董星龙
关键词 直流电弧等离子体镍银复合纳米粒子电阻率压片烧结    
Abstract:Ni-Ag nanoparticles were prepared by DC arc-discharge plasma method, using the compacted micron-sized powders of Ni and Ag as the raw targets. The content of Ni in Ni-Ag nanoparticles samples was 70.54%(mass fraction). The particles' sizes were mainly in range of 30-70 nm. The results indicate that the resistivity of compressed Ni-Ag powders has low resistivity of 5.36×10-5 Ω·cm. The conductive ink is prepared by using of Ni-Ag nanoparticles (70.54% of Ni) as the additive. An ink line is drew on a polyimide sheet matrix, subsequently dried and sintered at elevated temperatures under protective atmosphere of Ar. The electrical property testing results of sintering samples show dense structure and good conductivity over 300℃. It is indicated that the resistivity of the sintered sample declines with the temperature rising, i.e. 1.83×10-3 Ω·cm at sintering temperature of 450℃ which is much lower than that of the ink line of pure Ni nanoparticles.
Key wordsDC arc-discharge    plasma    Ni-Ag composite nanoparticle    electrical conductivity    compressed sheet    sintering
收稿日期: 2018-07-23      出版日期: 2020-03-18
中图分类号:  TM2  
通讯作者: 董星龙(1965-),男,教授,博士,从事专业:纳米材料学,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学新三束实验室201室(116024),E-mail:dongxl@dlut.edu.cn     E-mail: dongxl@dlut.edu.cn
引用本文:   
王子明, 王东星, 陆姗姗, 王鑫, 董星龙. 镍基Ni-Ag复合纳米粒子直流电弧等离子体法制备及其烧结电学性能[J]. 材料工程, 2020, 48(3): 92-97.
WANG Zi-ming, WANG Dong-xing, LU Shan-shan, WANG Xin, DONG Xing-long. Preparation of nickel-based Ni-Ag composite nanoparticles synthesized by DC arc-discharge plasma method and its sintering electrical properties. Journal of Materials Engineering, 2020, 48(3): 92-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000893      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/92
[1] JUNG I,YUN H J,KIM I,et al. A simple process for synthesis of Ag nanoparticles and sintering of conductive ink for use in printed electronics[J]. Journal of Electronic Materials,2012,41(1):115-121.
[2] PARK B J,PARK B O,RYU B H,et al. Rheological properties of Ag suspended fluid for inkjet printing[J]. Journal of Applied Physics,2010,108(10):102803.
[3] ZHANG Z,ZHANG X,XIN Z,et al. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect[J]. Advanced Materials,2013,25(46):6714-6718.
[4] WANG Z,LIANG X,ZHAO T,et al. Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks[J]. Journal of Materials Science:Materials in Electronics,2017,28(22):16939-16947.
[5] WANG Z,WANG W,JIANG Z,et al. Low temperature sintering nano-silver conductive ink printed on cotton fabric as printed electronics[J]. Progress in Organic Coatings,2016,101:604-611.
[6] FU J L,LI Y L,MO L X,et al. Preparation of conductive nanosilver ink and its application on RFID tags[J]. Advanced Materials Research,2014,904:121-125.
[7] KARDARIAN K,BUSANI T,OSÓRIO I,et al. Sintering of nanoscale silver coated textiles, a new approach to attain conductive fabrics for electromagnetic shielding[J]. Materials Chemistry and Physics,2014,147(3):815-822.
[8] PERELAER J,JANI R,GROUCHKO M,et al. Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils[J]. Advanced Materials,2012,24(29):3993-3998.
[9] YU Z,ZHANG Q,LI L,et al. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes[J]. Advanced Materials,2011,23(5):664-668.
[10] GHOSALE A,SHANKAR R,GANESAN V,et al. Direct-writing of paper based conductive track using silver nano-ink for electroanalytical application[J]. Electrochimica Acta,2016,209:511-520.
[11] KAMYSHNY A,MAGDASSI S. Conductive nanomaterials for printed electronics[J]. Small,2014,10(17):3515-3535.
[12] PAJOR-SWIERZY A,FARRAJ Y,KAMYSHNY A,et al. Air stable copper-silver core-shell submicron particles:synthesis and conductive ink formulation[J]. Colloids & Surfaces:A,2017,521:272-280.
[13] KIM S Y,KIM J,CHOE J,et al. Fabrication of electrically conductive nickel-silver bimetallic particles via polydopamine coating[J]. Journal of Nanoscience and Nanotechnology,2013,13(11):7600-7609.
[14] PENG Y H,YANG C H,CHEN K T,et al. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity[J]. Applied Surface Science,2012,263(24):38-44.
[15] LI W,LI W,WANG M,et al. Direct writing of stable Cu-Ag-based conductive patterns for flexible electronics[J]. RSC Advances,2016,6(13):10670-10676.
[16] 李黎瑛,张振忠,赵芳霞,等. 不同分散剂对超细镍粉分散性能的影响[J]. 电子元件与材料,2012,31(6):52-55. LI L Y,ZHANG Z Z,ZHAO F X,et al. Effect of different dispersants on the dispersion properties of ultrafine nickel powder[J]. Electronic Components and Materials,2012,31(6):52-55.
[17] SHINDE M D,PAWAR A U,KARMAKAR S,et al. Synthesis of uncapped silver nanoparticles using DC arc plasma technique:effect of change in plasma gas on morphological properties[J]. International Journal of Nanotechnology,2010,7(9/12):1110-1119.
[18] 张黎,周远良,张彬,等. 碳包覆镍纳米胶囊/石蜡复合材料电磁波吸收机制[J]. 材料导报,2016,30(12):31-36. ZHANG L,ZHOU Y L,ZHANG B,et al. Electromagnetic wave absorption of carbon-coated nickel nanocapsules/paraffin composites[J]. Materials Reports,2016,30(12):31-36.
[19] WANG D,LI D,MUHAMMAD J,et al. In situ synthesis and electronic transport of the carbon-coated Ag@C/MWCNT nanocomposite[J]. RSC Advances,2018,8(14):7450-7456.
[1] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[2] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[3] 黄昊, 赵晶晶, 韩翠柳, 杨新宇, 潘亚飞, 张久兴. 基于制备钨钼复合靶材的SPS烧结连接[J]. 材料工程, 2020, 48(3): 84-91.
[4] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[5] 赵枢明, 薛铠华, 杨通, 张雪, 姚山. 烧结颈分布对3D打印覆膜Al2O3零件强度的影响[J]. 材料工程, 2019, 47(8): 132-140.
[6] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[7] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[8] 陈鹏, 朱小刚, 吴甲民, 王联凤, 史玉升. 基于SLS/CIP工艺SiC陶瓷的制备及其性能[J]. 材料工程, 2019, 47(3): 87-93.
[9] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[10] 刘艳芳, 冯可芹, 周虹伶, 柯思璇. 烧结温度对大电流电场烧结制备W-Mo-Cu合金的影响[J]. 材料工程, 2019, 47(11): 135-140.
[11] 孙翱魁, 刘跃军, 陈晴柔. 钼铜复合粉末的致密化及性能[J]. 材料工程, 2019, 47(1): 112-118.
[12] 陈敬炎, 吴甲民, 陈安南, 肖欢, 李国锐, 刘梦月, 李晨辉, 史玉升. 基于激光选区烧结的煤系高岭土多孔陶瓷的制备及其性能[J]. 材料工程, 2018, 46(7): 36-43.
[13] 乔栩, 林治, 林晓丹. 石墨烯的制备及其对环氧树脂导电性能的影响[J]. 材料工程, 2018, 46(7): 53-60.
[14] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[15] 倪秀英, 赵军, 孙加林, 李洪江, 侯冠明, 田源. 梯度结构Al2O3-(W,Ti) C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备[J]. 材料工程, 2018, 46(2): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn