Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 44-52    DOI: 10.11868/j.issn.1001-4381.2018.000905
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
控温铸型连铸Cu-Ni-Si合金的加工工艺与组织性能的关系及其机理
廖万能1, 刘雪峰1,2,3, 王思清1
1. 北京科技大学 材料科学与工程学院, 北京 100083;
2. 北京科技大学 现代交通金属材料与加工技术北京实验室, 北京 100083;
3. 北京科技大学 材料先进制备技术教育部重点实验室, 北京 100083
Relationship among processing technology, microstructure and properties of Cu-Ni-Si alloy prepared by temperature controlled mold continuous casting and mechanism
LIAO Wan-neng1, LIU Xue-feng1,2,3, WANG Si-qing1
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China;
3. Key Laboratory for Advanced Materials Processing of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(6664 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用控温铸型连铸(temperature controlled mold continuous casting,TCMCC)技术制备C70250铜合金带坯,对带坯进行冷轧及不同温度和时间的时效处理,研究加工工艺与微观组织、力学性能及导电性能的关系,并揭示其机理。结果表明:TCMCC制备的C70250铜合金带坯具有粗大的柱状晶组织,横向晶界较少,经变形量97.5%的冷轧后形成了沿轧向的纤维条带状组织。当时效温度为450℃、时效时间为60min时,合金的抗拉强度为758MPa、导电率为54.5% IACS;与传统制备工艺相比,抗拉强度提高了5.3%,导电率提高了36.3%,实现了强度和导电率的同步提升。该条件下合金保留了纤维条带状组织并均匀析出了大量尺寸为6~10nm的Ni2Si相,通过加工硬化和Orowan强化共同作用提高了合金的强度;且溶质原子得到充分析出,横向晶界较少,显著提高了C70250铜合金的导电性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖万能
刘雪峰
王思清
关键词 Cu-Ni-Si合金控温铸型连铸加工工艺组织性能影响机理    
Abstract:Temperature controlled mold continuous casting (TCMCC) technology was used to produce C70250 copper alloy strips. The strips were cold rolled and aged at different temperatures and time. The relationships among processing technology, microstructure, mechanical properties and electrical conductivity were investigated to reveal the mechanism. The results show that the C70250 copper alloy strips prepared by TCMCC have coarse columnar grain structure with less transverse grain boundaries. After cold rolling with the deformation of 97.5%, the fibrous microstructure is formed along the rolling direction. When the aging temperature and the aging time are 450℃ and 60min, the tensile strength and the electrical conductivity of the alloy are 758MPa and 54.5%IACS. Compared with the alloy prepared by traditional process, the tensile strength and the electrical conductivity increase by 5.3% and 36.3% respectively, which means the strength and electrical conductivity are improved simultaneously. Under this condition, the alloy retains the fibrous microstructure and a large number of Ni2Si phases are uniformly precipitated with the size of 6-10nm. The strength of the alloy is improved with the joint action of work hardening and Orowan strengthening. The electrical conductivity of the C70250 copper alloy is significantly improved by the fully precipitated solute atoms and the reduced transverse grain boundaries.
Key wordsCu-Ni-Si alloy    TCMCC    processing technology    microstructure and property    influence mec-hanism
收稿日期: 2018-07-26      出版日期: 2019-10-12
中图分类号:  TG146.1+1  
通讯作者: 刘雪峰(1970-),男,教授,博士,主要从事高性能金属材料短流程高效制备加工研究,联系地址:北京市海淀区学院路30号北京科技大学材料科学与工程学院(100083),E-mail:liuxuefengbj@163.com     E-mail: liuxuefengbj@163.com
引用本文:   
廖万能, 刘雪峰, 王思清. 控温铸型连铸Cu-Ni-Si合金的加工工艺与组织性能的关系及其机理[J]. 材料工程, 2019, 47(10): 44-52.
LIAO Wan-neng, LIU Xue-feng, WANG Si-qing. Relationship among processing technology, microstructure and properties of Cu-Ni-Si alloy prepared by temperature controlled mold continuous casting and mechanism. Journal of Materials Engineering, 2019, 47(10): 44-52.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000905      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/44
[1] 朱永兵,慕思国,李华清,等.Cu-Cr-Zr系合金变形过程中的织构分析[J].材料工程,2009(7):9-11. ZHU Y B,MU S G,LI H Q,et al.Texture analysis of Cu-Cr-Zr alloy in process of deformation[J].Journal of Materials Engine-ering,2009(7):9-11.
[2] 王深强,陈志强,彭德林,等.高强高导铜合金的研究概述[J].材料工程,1995(7):3-6. WANG S Q,CHEN Z Q,PENG D L,et al.A comprehensive survey of high conductivity, high strength copper based alloys[J].Journal of Materials Engineering,1995(7):3-6.
[3] WANG W,KANG H,CHEN Z,et al.Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J].Materials Science and Engineering:A,2016,673:378-390.
[4] LI Z,PAN Z Y,ZHAO Y Y,et al.Microstructure and properties of high-conductivity,super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy[J].Journal of Materials Research,2009,24(6):2123-2129.
[5] ALTENBERGER I,KUHN H,GHOLAMI M,et al.Ultrafine-grained precipitation hardened copper alloys by swaging or accumulative roll bonding[J].Metals,2015,5(2):763-776.
[6] GHOLAMI M,ALTENBERGER I,VESELY J,et al.Effects of severe plastic deformation on transformation kinetics of precip-itates in CuNi3Si1Mg[J].Materials Science and Engineering:A,2016,676:156-164.
[7] LI S,LI Z,XIAO Z,et al.Microstructure and property of Cu-2.7Ti-0.15Mg-0.1Ce-0.1Zr alloy treated with a combined aging process[J].Materials Science and Engineering:A,2016,650:345-353.
[8] VINOGRADOV A,PATLAN V,SUZUKI Y,et al.Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing[J].Acta Materialia,2002,50(7):1639-1651.
[9] 肖翔鹏,黄国杰,程磊,等.固溶时效工艺对Cu-Ni-Si合金组织和性能的影响[J].稀有金属,2011,35(5):673-678. XIAO X P,HUANG G J,CHENG L,et al.Effect of solution and aging technique on microstructure and properties of Cu-Ni-Si alloy[J].Chinese Journal of Rare Metals,2011,35(5):673-678.
[10] WU Y,LI Y,LU J,et al.Effects of pre-deformation on preci-pitation behaviors and properties in Cu-Ni-Si-Cr alloy[J].Materials Science and Engineering:A,2019,742:501-507.
[11] 李伟,刘平,马凤仓,等.时效与冷变形对Cu-Ni-Si合金微观组织和性能的影响[J].稀有金属,2011,35(3):330-335. LI W,LIU P,MA F C,et al.Effects of aging and cold deformation on microstructure and properties for Cu-Ni-Si alloy[J].Chinese Journal of Rare Metals,2011,35(3):330-335.
[12] XIANG P X,BAI Q X,QIANG S W,et al.Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treat-ments[J].Rare Metals,2013,32(2):144-149.
[13] HOU P,LI R,WANG Q,et al.Breaking the trade-off relation of strength and electrical conductivity in pure Al wire by controlling texture and grain boundary[J].Journal of Alloys and Compo-unds,2018,769:96-109.
[14] LEI Q,LI Z,GAO Y,et al.Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes[J].Journal of Alloys and Compounds,2017,695:2413-2423.
[15] 李华清,汤玉琼,汪明朴.热轧生产工艺对C70250合金力学性能和导电性能的影响[J].中国有色金属学报,2010,20(1):62-66. LI H Q,TANG Y Q,WANG M P.Effects of hot rolling process on mechanical and electrical properties of C70250 alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(1):62-66.
[16] XIAO X P,XIONG B Q,HUANG G J,et al.Microstructure and properties of Cu-2.8Ni-0.6Si alloy[J].Rare Metals,2013,32(3):228-233.
[17] KOCKS U F.On the spacing of dispersed obstacles[J].Acta Metallurgica,1966,14(11):1629-1631.
[18] LEI Q,LI Z,XIAO T,et al.A new ultrahigh strength Cu-Ni-Si alloy[J].Intermetallics,2013,42:77-84.
[19] WANG Z M,SHIFLET G J.Heterogeneous nucleation of σ' on dislocations in a dilute aluminum-lithium alloy[J].Metallurgical and Materials Transactions A,1996,27(6):1599-1609.
[20] MABUCHI M,HIGASHI K.Strengthening mechanism of Mg-Si alloy[J].Acta Materialia,1996,44(11):4611-4618.
[21] LEI Q,LI Z,ZHU A,et al.The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treat-ment[J].Materials Characterization,2011,62(9):904-911.
[22] 马红旭,李友国. 硅钢中析出物的尺寸分布以及体积分数的测定[J].材料科学与工程,2002,20(3):328-330. MA H X,LI Y G.Measurement of size distribution and volume fraction of precipitates in silicon steel[J].Materials Science and Engineering,2002,20(3):328-330.
[23] VERDIER M,GROMA I,FLANDIN L,et al.Dislocation densi-ties and stored energy after cold rolling of Al-Mg alloys:investigations by resistivity and differential scanning calorimetry[J].Scripta Materialia,1997,37(4):449-454.
[24] HANSEN N.Polycrystalline strengthening[J].Metallurgical Transactions A,1985,16(12):2168-2190.
[25] FU H D,XU S,LI W,et al.Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J].Materials Science and Engineering:A,2017,700:107-115.
[1] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[2] 刘政军, 贾华, 李萌. 自保护药芯焊丝堆焊原位合成TiB2-TiC颗粒对堆焊合金组织性能的影响[J]. 材料工程, 2018, 46(7): 106-112.
[3] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[4] 范清松, 杨忠波, 周军, 石明华, 陈鑫, 李中奎. Zr-Sn-Nb-Fe系锆合金中第二相粒子研究进展[J]. 材料工程, 2016, 44(4): 110-118.
[5] 司家勇, 李胜, 张继. 大变形量近等温锻造开坯对TiAl合金组织与性能的影响[J]. 材料工程, 2013, 0(6): 40-44.
[6] 丁万武, 夏天东, 赵文军. TiAl3对TiC粒子在铝熔体中沉淀特性的影响机理[J]. 材料工程, 2013, 0(3): 10-15.
[7] 王祯, 刘雪峰, 何勇, 谢建新. 硅青铜线材无模拉拔工艺与组织性能关系[J]. 材料工程, 2012, 0(5): 59-63.
[8] 陈继平, 钱健清, 李胜祗, 康永林. Ti+Nb和Ti+V超低碳烘烤硬化钢的组织和性能研究[J]. 材料工程, 2012, 0(4): 32-35.
[9] 王秋娜, 刘新华, 刘雪峰, 谢建新. 冷拉拔铜包铝细丝的退火工艺与组织性能研究[J]. 材料工程, 2008, 0(7): 30-35.
[10] 张永忠, 席明哲, 石力开, 程晶, 徐骏. 激光快速成形316L不锈钢研究[J]. 材料工程, 2002, 0(5): 22-25.
[11] 曾鹏, 胡社军, 谢光荣, 黄拿灿, 吴起白. 多弧离子镀(Ti,W)xN合金涂层组织与性能[J]. 材料工程, 2000, 0(9): 33-35,41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn