Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (9): 123-131    DOI: 10.11868/j.issn.1001-4381.2018.000908
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
界面法制备三维网状PPy-PEDOT共聚物膜及电容性能
李闽1,2,*(), 刘敏3, 刘康4,*()
1 武汉商学院 机电工程与汽车服务学院, 武汉 430056
2 武汉大学 资源与环境科学学院, 武汉 430072
3 国网浙江省电力公司电力科学研究院, 杭州 310014
4 武汉经济技术开发区(汉南区)经信局, 武汉 430056
Preparation and capacitance properties of three-dimensional network PPy-PEDOT copolymer membranes by interface method
Min LI1,2,*(), Min LIU3, Kang LIU4,*()
1 Department of Mechatronics Engineering, Wuhan Business University, Wuhan 430056, China
2 School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
3 State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
4 Economic and Information Technology Bureau, Wuhan Economic and Technological Development Zone(WHDZ), Wuhan 430056, China
全文: PDF(11657 KB)   HTML ( 15 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

制备具有多电子传输与多孔有序的结构电极是电化学储能技术创新发展的两个重要策略。本工作采用一种界面电化学聚合新法合成聚吡咯-聚3,4-乙撑二氧噻吩(PPy-PEDOT)共聚物薄膜材料。采用FTIR,XPS,EDX,SEM与电化学充放电测试对PPy-PEDOT共聚物膜的化学组成、分布、微观形貌及电容性能进行表征与测试。结果表明:PPy-PEDOT共聚物膜由PPy与PEDOT按一定比例组成,且分布均匀;SEM测试表明共聚物膜具有正反两面各异的特殊形貌,且有机相一侧呈三维网状多孔层状结构。电化学充放电测试表明,PPy-PEDOT共聚物膜表现出优异的超级电容器电极材料的特性,具有较高的比电容,较快的充放电速率与较好的循环稳定性。PPy与PEDOT共聚后实现二者性能互补,提高了共聚物膜的导电性,电荷迁移速率及稳定性,同时三维网状多孔层状结构也有助于充放电过程中电子离子的迁移,使得共聚物膜的储能性能显著提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李闽
刘敏
刘康
关键词 聚吡咯PEDOT共聚物界面聚合超级电容器    
Abstract

Advances in multi-electron transfer materials and architectured electrodes are two important strategies for innovations in electrochemicalenergy storage. The attainment of both by interfacial electrodeposition of freestanding PPy-PEDOT copolymer films was reported. The composition of the copolymer was verified by FTIR and XPS spectra.The dispersion and microstructure of PPy and PEDOT were studied by EDX mapping and SEM. The capacitive performances of the copolymer films were studied by electrochemical measurements. The results show the copolymer film is composed of PPy and PEDOT with homogeneous distribution in a certain proportion.The SEM images show the film exhibits heterogeneous microstructure and has an open porous 3D network microstructure. Electrochemical characterization shows that the copolymer film is an excellent supercapacitor electrode material with high specific capacitance, good power capability and cycle performance. The multi-electron transfer nature of the copolymer, the copolymerization synergistic effects and the unique microstructure are responsible for the improved charge-discharge performances.

Key wordspolypyrrole    PEDOT    copolymer    interfacial synthesis    supercapacitor
收稿日期: 2018-07-26      出版日期: 2019-09-18
中图分类号:  TB332  
基金资助:湖北省自然科学基金项目(2018CFB139)
通讯作者: 李闽,刘康     E-mail: cherry1986222@163.com;14700241@qq.com
作者简介: 刘康(1982-), 男, 博士, 研究方向为信号处理, 联系地址:武汉经济技术开发区(汉南区)经信局C421(430056), E-mail:14700241@qq.com
李闽(1986-), 女, 高级工程师, 博士, 研究方向为高分子储能材料及电化学性能, 联系地址:湖北省武汉市汉阳区东风大道816号武汉商学院机电工程与汽车服务学院311室(430056), E-mail:cherry1986222@163.com
引用本文:   
李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
Min LI, Min LIU, Kang LIU. Preparation and capacitance properties of three-dimensional network PPy-PEDOT copolymer membranes by interface method. Journal of Materials Engineering, 2019, 47(9): 123-131.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000908      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/123
Fig.1  动态固/液/液三相界域电化学聚合PPy-PEDOT共聚物膜过程
Fig.2  循环伏安法聚合导电聚合物的CV曲线
(a)PPy; (b)PEDOT; (c)PPy-PEDOT共聚物的CV曲线; (d)不同Py/EDOT比例下恒电位法聚合PPy-PEDOT共聚物的I-t曲线
Fig.3  纯PPy, PEDOT膜及单体浓度比为1:1下合成的PPy-PEDOT共聚物膜成分分析
(a)红外光谱;(b)XPS元素分析
Py/EDOT feed ratio Atom fraction/% PPy/PEDOT ratio in composite
C O N S Cl
10:1 70.2 19.4 7.9 0.8 1.9 9.88
2:1 72.4 17.2 7.2 0.8 2.5 9.00
1:1 71.2 18.2 7.4 1.1 2.1 6.73
1:5 69.5 21.2 5.1 1.4 2.8 3.64
Table 1  不同Py/EDOT比例下PPy-PEDOT共聚物膜元素分析数据
Fig.4  PPy-PEDOT复合薄膜的SEM图
(a)Py/EDOT比例为10:1;(b)Py/EDOT比例为1:1;(c)Py/EDOT比例为1:5;(1)复合膜正面(靠近水相一侧); (2)复合膜反面(靠近有机相一侧)
Fig.5  PPy-PEDOT共聚物膜表面元素分析EDX图
(a)正面;(b)反面
Fig.6  PPy-PEDOT共聚物膜电极循环伏安特性
(a)Py/EDOT比例为1:1时合成PPy-PEDOT共聚物膜不同扫描速率下的CV曲线;(b)50mV·s-1下纯PPy膜,纯PEDOT膜及PPy-PEDOT共聚物膜的CV曲线;(c)不同扫描速率下纯PPy膜,纯PEDOT膜及PPy-PEDOT共聚物膜的比电容值
Fig.7  PPy-PEDOT共聚物膜电极恒流充放电曲线
(a)Py/EDOT比例为1:1时合成PPy-PEDOT共聚物膜不同电流密度下的恒流充放电曲线;(b)1A·g-1下纯PPy膜及PPy-PEDOT共聚物膜恒流充放电曲线;(c)不同电流密度下纯PPy膜及PPy-PEDOT共聚物膜的比电容值
Fig.8  纯PPy与PPy-PEDOT共聚物膜循环寿命曲线
1 MACDIARMID A G . "Synthetic metals":a novel role for organic polymers[J]. Angewandte Chemie-International Edition, 2001, 40 (14): 2581- 2590.
doi: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
2 LIU R , I C S , LEE S B . Poly(3, 4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapa-citor[J]. Nanotechnology, 2008, 19 (21): 25710.
3 HELGESEN M , SONDERGAARD R , KREBS F C . Advanced materials and processes for polymer solar cell devices[J]. Journal of Materials Chemistry, 2010, 20 (1): 36- 60.
doi: 10.1039/B913168J
4 WINTHER-JENSEN B , WINTHER-JENSEN O , FORSYTH M , et al. High rates of oxygen reduction over a vapor phase-polym-erized PEDOT electrode[J]. Science, 2008, 321 (5889): 671- 674.
doi: 10.1126/science.1159267
5 MORTIMER R J , DYER A L , REYNOLDS J R . Electrochromic organic and polymeric materials for display applications[J]. Displays, 2006, 27 (1): 2- 18.
doi: 10.1016/j.displa.2005.03.003
6 PENG C , JIN J , CHEN G Z . A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes[J]. Electrochimica Acta, 2007, 53 (2): 525- 537.
doi: 10.1016/j.electacta.2007.07.004
7 DAI Z , PENG C , CHAE J H , et al. Cell voltage versus electrode potential range in aqueous supercapacitors[J]. Scientific Report, 2015, 5, 9854.
doi: 10.1038/srep09854
8 XU Y L , SUN W , WANG S H . Capacitance properties of poly(3, 4-ethylenedioxythiophene)/polypyrrole composites[J]. Journal of Power Sources, 2006, 159 (1): 370- 373.
doi: 10.1016/j.jpowsour.2006.04.011
9 SILVA A J C , FERREIRA S M F , SANTOS D P , et al. A multielectrochromic copolymer based on pyrrole and thiophene derivatives[J]. Solar Energy Materials and Solar Cells, 2012, 103, 108- 113.
doi: 10.1016/j.solmat.2012.03.024
10 TEMMER R , MAZIZ A , PLESSE A C , et al. In search of better electroactive polymer actuator materials:PPy versus PEDOT versus PEDOT-PPy composites[J]. Smart Materials and Structures, 2013, 22 (10): 1- 16.
11 ASTRATINE L , MAGNER E , CASSIDY J , et al. Electrode-position and characterisation of copolymers based on pyrrole and 3, 4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration[J]. Electrochimica Acta, 2014, 115, 440- 448.
doi: 10.1016/j.electacta.2013.10.198
12 FOSSEY S A , BRUNO F F , KUMAR J , et al. Conformational analysis of the conducting copolymer poly(3, 4-ethylenedi-oxythiophene-co-pyrrole)[J]. Synthetic Metals, 2009, 159 (14): 1409- 1413.
doi: 10.1016/j.synthmet.2009.03.018
13 LIU X , WU T , DAI Z , et al. Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes[J]. Journal of Power Sources, 2016, 307, 208- 213.
doi: 10.1016/j.jpowsour.2016.01.006
14 WANG J , LI X Y , CHEN X , et al. Electrochemical superca-pacitor electrode material based on poly(3, 4-ethylenedioxy-thiophene)/polypyrrole composite[J]. Journal of Power Sources, 2007, 163 (2): 1120- 1125.
doi: 10.1016/j.jpowsour.2006.10.004
15 TAO Y J , ZHENG W W , ZHANG Z Y , et al. Electrosyn-thesises and characterizations of copolymers based on pyrrole and 3, 4-ethylenedioxythiophene in aqueous micellar solution[J]. Synthetic Metals, 2012, 162 (7): 728- 734.
16 SARAC A S , CEBECI F C . Electrochemical synthesis and structural studies of polypyrroles, poly(3, 4-ethylenedio-xythiophene)s and copolymers of pyrrole and 3, 4-ethylened-ioxythiophene on carbon fibre microelectrodes[J]. Journal of Applied Electrochemistry, 2003, 33 (3/4): 295- 301.
doi: 10.1023/A:1024139303585
17 LI M , ZHU H , MAO X H , et al. Electropolymerization of polypyrrole at the three-phase interline:influence of polymeri-zation conditions[J]. Electrochimica Acta, 2013, 92, 108- 116.
doi: 10.1016/j.electacta.2013.01.016
18 ZHU H , GAO L L , LI M , et al. Fabrication of free-standing conductive polymer films through dynamic three-phase interline electropolymerization[J]. Electrochemistry Communications, 2011, 13 (12): 1479- 1483.
doi: 10.1016/j.elecom.2011.09.029
19 LI C , IMAE T . Electrochemical and optical properties of the poly(3, 4-Ethylenedioxythiophene) film electropolymerized in an aqueous sodium dodecyl sulfate and lithium tetrafluoroborate medium[J]. Macromolecules, 2004, 37 (7): 2411- 2416.
doi: 10.1021/ma035188w
20 BHAT D K , KUMAR M S . N and P doped poly(3, 4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors[J]. Journal of Materials Science, 2007, 42 (19): 8158- 8162.
doi: 10.1007/s10853-007-1704-9
21 ZHAO T K , SHE S F , JI X L , et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J]. Journal of Alloys and Compounds, 2017, 708, 500- 507.
doi: 10.1016/j.jallcom.2017.03.019
[1] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[2] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[3] 易著武, 刘跃军, 刘小超, 杨坚, 李祥刚, 范淑红. 乙烯-乙烯醇共聚物/尼龙6复合材料的加工流变性能[J]. 材料工程, 2021, 49(8): 145-152.
[4] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[5] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[6] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[7] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[8] 张小广, 邓慧宇, 陈庆春, 邦宇, 晏乐安, 那兵. 5-异氰酸酯异肽酰氯/ZnO/超支化聚酰胺纳滤膜的制备及性能[J]. 材料工程, 2020, 48(5): 91-99.
[9] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[10] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[11] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[12] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[13] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[14] 马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚. 聚合物共混物增容技术及发展[J]. 材料工程, 2019, 47(2): 26-33.
[15] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn