Preparation and capacitance properties of three-dimensional network PPy-PEDOT copolymer membranes by interface method
Min LI1,2,*(), Min LIU3, Kang LIU4,*()
1 Department of Mechatronics Engineering, Wuhan Business University, Wuhan 430056, China 2 School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China 3 State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China 4 Economic and Information Technology Bureau, Wuhan Economic and Technological Development Zone(WHDZ), Wuhan 430056, China
Advances in multi-electron transfer materials and architectured electrodes are two important strategies for innovations in electrochemicalenergy storage. The attainment of both by interfacial electrodeposition of freestanding PPy-PEDOT copolymer films was reported. The composition of the copolymer was verified by FTIR and XPS spectra.The dispersion and microstructure of PPy and PEDOT were studied by EDX mapping and SEM. The capacitive performances of the copolymer films were studied by electrochemical measurements. The results show the copolymer film is composed of PPy and PEDOT with homogeneous distribution in a certain proportion.The SEM images show the film exhibits heterogeneous microstructure and has an open porous 3D network microstructure. Electrochemical characterization shows that the copolymer film is an excellent supercapacitor electrode material with high specific capacitance, good power capability and cycle performance. The multi-electron transfer nature of the copolymer, the copolymerization synergistic effects and the unique microstructure are responsible for the improved charge-discharge performances.
李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
Min LI, Min LIU, Kang LIU. Preparation and capacitance properties of three-dimensional network PPy-PEDOT copolymer membranes by interface method. Journal of Materials Engineering, 2019, 47(9): 123-131.
LIU R , I C S , LEE S B . Poly(3, 4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapa-citor[J]. Nanotechnology, 2008, 19 (21): 25710.
3
HELGESEN M , SONDERGAARD R , KREBS F C . Advanced materials and processes for polymer solar cell devices[J]. Journal of Materials Chemistry, 2010, 20 (1): 36- 60.
doi: 10.1039/B913168J
4
WINTHER-JENSEN B , WINTHER-JENSEN O , FORSYTH M , et al. High rates of oxygen reduction over a vapor phase-polym-erized PEDOT electrode[J]. Science, 2008, 321 (5889): 671- 674.
doi: 10.1126/science.1159267
5
MORTIMER R J , DYER A L , REYNOLDS J R . Electrochromic organic and polymeric materials for display applications[J]. Displays, 2006, 27 (1): 2- 18.
doi: 10.1016/j.displa.2005.03.003
6
PENG C , JIN J , CHEN G Z . A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes[J]. Electrochimica Acta, 2007, 53 (2): 525- 537.
doi: 10.1016/j.electacta.2007.07.004
7
DAI Z , PENG C , CHAE J H , et al. Cell voltage versus electrode potential range in aqueous supercapacitors[J]. Scientific Report, 2015, 5, 9854.
doi: 10.1038/srep09854
8
XU Y L , SUN W , WANG S H . Capacitance properties of poly(3, 4-ethylenedioxythiophene)/polypyrrole composites[J]. Journal of Power Sources, 2006, 159 (1): 370- 373.
doi: 10.1016/j.jpowsour.2006.04.011
9
SILVA A J C , FERREIRA S M F , SANTOS D P , et al. A multielectrochromic copolymer based on pyrrole and thiophene derivatives[J]. Solar Energy Materials and Solar Cells, 2012, 103, 108- 113.
doi: 10.1016/j.solmat.2012.03.024
10
TEMMER R , MAZIZ A , PLESSE A C , et al. In search of better electroactive polymer actuator materials:PPy versus PEDOT versus PEDOT-PPy composites[J]. Smart Materials and Structures, 2013, 22 (10): 1- 16.
11
ASTRATINE L , MAGNER E , CASSIDY J , et al. Electrode-position and characterisation of copolymers based on pyrrole and 3, 4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration[J]. Electrochimica Acta, 2014, 115, 440- 448.
doi: 10.1016/j.electacta.2013.10.198
12
FOSSEY S A , BRUNO F F , KUMAR J , et al. Conformational analysis of the conducting copolymer poly(3, 4-ethylenedi-oxythiophene-co-pyrrole)[J]. Synthetic Metals, 2009, 159 (14): 1409- 1413.
doi: 10.1016/j.synthmet.2009.03.018
13
LIU X , WU T , DAI Z , et al. Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes[J]. Journal of Power Sources, 2016, 307, 208- 213.
doi: 10.1016/j.jpowsour.2016.01.006
14
WANG J , LI X Y , CHEN X , et al. Electrochemical superca-pacitor electrode material based on poly(3, 4-ethylenedioxy-thiophene)/polypyrrole composite[J]. Journal of Power Sources, 2007, 163 (2): 1120- 1125.
doi: 10.1016/j.jpowsour.2006.10.004
15
TAO Y J , ZHENG W W , ZHANG Z Y , et al. Electrosyn-thesises and characterizations of copolymers based on pyrrole and 3, 4-ethylenedioxythiophene in aqueous micellar solution[J]. Synthetic Metals, 2012, 162 (7): 728- 734.
16
SARAC A S , CEBECI F C . Electrochemical synthesis and structural studies of polypyrroles, poly(3, 4-ethylenedio-xythiophene)s and copolymers of pyrrole and 3, 4-ethylened-ioxythiophene on carbon fibre microelectrodes[J]. Journal of Applied Electrochemistry, 2003, 33 (3/4): 295- 301.
doi: 10.1023/A:1024139303585
17
LI M , ZHU H , MAO X H , et al. Electropolymerization of polypyrrole at the three-phase interline:influence of polymeri-zation conditions[J]. Electrochimica Acta, 2013, 92, 108- 116.
doi: 10.1016/j.electacta.2013.01.016
18
ZHU H , GAO L L , LI M , et al. Fabrication of free-standing conductive polymer films through dynamic three-phase interline electropolymerization[J]. Electrochemistry Communications, 2011, 13 (12): 1479- 1483.
doi: 10.1016/j.elecom.2011.09.029
19
LI C , IMAE T . Electrochemical and optical properties of the poly(3, 4-Ethylenedioxythiophene) film electropolymerized in an aqueous sodium dodecyl sulfate and lithium tetrafluoroborate medium[J]. Macromolecules, 2004, 37 (7): 2411- 2416.
doi: 10.1021/ma035188w
20
BHAT D K , KUMAR M S . N and P doped poly(3, 4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors[J]. Journal of Materials Science, 2007, 42 (19): 8158- 8162.
doi: 10.1007/s10853-007-1704-9
21
ZHAO T K , SHE S F , JI X L , et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J]. Journal of Alloys and Compounds, 2017, 708, 500- 507.
doi: 10.1016/j.jallcom.2017.03.019