Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 123-131    DOI: 10.11868/j.issn.1001-4381.2018.000908
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
界面法制备三维网状PPy-PEDOT共聚物膜及电容性能
李闽1,2, 刘敏3, 刘康4
1. 武汉商学院 机电工程与汽车服务学院, 武汉 430056;
2. 武汉大学 资源与环境科学学院, 武汉 430072;
3. 国网浙江省电力公司电力科学研究院, 杭州 310014;
4. 武汉经济技术开发区(汉南区)经信局, 武汉 430056
Preparation and capacitance properties of three-dimensional network PPy-PEDOT copolymer membranes by interface method
LI Min1,2, LIU Min3, LIU Kang4
1. Department of Mechatronics Engineering, Wuhan Business University, Wuhan 430056, China;
2. School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China;
3. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China;
4 Economic and Information Technology Bureau, Wuhan Economic and Technological Development Zone(WHDZ), Wuhan 430056, China
全文: PDF(11657 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 制备具有多电子传输与多孔有序的结构电极是电化学储能技术创新发展的两个重要策略。本工作采用一种界面电化学聚合新法合成聚吡咯-聚3,4-乙撑二氧噻吩(PPy-PEDOT)共聚物薄膜材料。采用FTIR,XPS,EDX,SEM与电化学充放电测试对PPy-PEDOT共聚物膜的化学组成、分布、微观形貌及电容性能进行表征与测试。结果表明:PPy-PEDOT共聚物膜由PPy与PEDOT按一定比例组成,且分布均匀;SEM测试表明共聚物膜具有正反两面各异的特殊形貌,且有机相一侧呈三维网状多孔层状结构。电化学充放电测试表明,PPy-PEDOT共聚物膜表现出优异的超级电容器电极材料的特性,具有较高的比电容,较快的充放电速率与较好的循环稳定性。PPy与PEDOT共聚后实现二者性能互补,提高了共聚物膜的导电性,电荷迁移速率及稳定性,同时三维网状多孔层状结构也有助于充放电过程中电子离子的迁移,使得共聚物膜的储能性能显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李闽
刘敏
刘康
关键词 聚吡咯PEDOT共聚物界面聚合超级电容器    
Abstract:Advances in multi-electron transfer materials and architectured electrodes are two important strategies for innovations in electrochemicalenergy storage. The attainment of both by interfacial electrodeposition of freestanding PPy-PEDOT copolymer films was reported. The composition of the copolymer was verified by FTIR and XPS spectra.The dispersion and microstructure of PPy and PEDOT were studied by EDX mapping and SEM. The capacitive performances of the copolymer films were studied by electrochemical measurements. The results show the copolymer film is composed of PPy and PEDOT with homogeneous distribution in a certain proportion.The SEM images show the film exhibits heterogeneous microstructure and has an open porous 3D network microstructure. Electrochemical characterization shows that the copolymer film is an excellent supercapacitor electrode material with high specific capacitance, good power capability and cycle performance. The multi-electron transfer nature of the copolymer, the copolymerization synergistic effects and the unique microstructure are responsible for the improved charge-discharge performances.
Key wordspolypyrrole    PEDOT    copolymer    interfacial synthesis    supercapacitor
收稿日期: 2018-07-26      出版日期: 2019-09-18
中图分类号:  TB332  
基金资助: 
通讯作者: 李闽(1986-),E-mail:cherry1986222@163.com;刘康(1982-),E-mail:14700241@qq.com     E-mail: cherry1986222@163.com;14700241@qq.com
引用本文:   
李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
LI Min, LIU Min, LIU Kang. Preparation and capacitance properties of three-dimensional network PPy-PEDOT copolymer membranes by interface method. Journal of Materials Engineering, 2019, 47(9): 123-131.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000908      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/123
[1] MACDIARMID A G. "Synthetic metals":a novel role for organic polymers[J].Angewandte Chemie-International Edition, 2001, 40(14):2581-2590.
[2] LIU R, I C S, LEE S B. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapa-citor[J]. Nanotechnology, 2008, 19(21):25710.
[3] HELGESEN M, SONDERGAARD R, KREBS F C. Advanced materials and processes for polymer solar cell devices[J]. Journal of Materials Chemistry, 2010, 20(1):36-60.
[4] WINTHER-JENSEN B, WINTHER-JENSEN O,FORSYTH M, et al. High rates of oxygen reduction over a vapor phase-polym-erized PEDOT electrode[J].Science,2008,321(5889):671-674.
[5] MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications[J]. Displays, 2006, 27(1):2-18.
[6] PENG C, JIN J, CHEN G Z. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes[J].Electrochimica Acta, 2007, 53(2):525-537.
[7] DAI Z, PENG C, CHAE J H, et al. Cell voltage versus electrode potential range in aqueous supercapacitors[J].Scientific Report, 2015, 5:9854.
[8] XU Y L, SUN W, WANG S H. Capacitance properties of poly(3,4-ethylenedioxythiophene)/polypyrrole composites[J].Journal of Power Sources, 2006, 159(1):370-373.
[9] SILVA A J C, FERREIRA S M F, SANTOS D P, et al. A multielectrochromic copolymer based on pyrrole and thiophene derivatives[J]. Solar Energy Materials and Solar Cells, 2012, 103:108-113.
[10] TEMMER R, MAZIZ A, PLESSE A C, et al. In search of better electroactive polymer actuator materials:PPy versus PEDOT versus PEDOT-PPy composites[J]. Smart Materials and Structures, 2013, 22(10):1-16.
[11] ASTRATINE L, MAGNER E,CASSIDY J, et al. Electrode-position and characterisation of copolymers based on pyrrole and 3,4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration[J].Electrochimica Acta, 2014, 115:440-448.
[12] FOSSEY S A, BRUNO F F, KUMAR J, et al. Conformational analysis of the conducting copolymer poly(3,4-ethylenedi-oxythiophene-co-pyrrole)[J].Synthetic Metals, 2009, 159(14):1409-1413.
[13] LIU X, WU T, DAI Z, et al. Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes[J].Journal of Power Sources, 2016,307:208-213.
[14] WANG J, LI X Y, CHEN X, et al. Electrochemical superca-pacitor electrode material based on poly(3,4-ethylenedioxy-thiophene)/polypyrrole composite[J]. Journal of Power Sources, 2007, 163(2):1120-1125.
[15] TAO Y J, ZHENG W W, ZHANG Z Y, et al. Electrosyn-thesises and characterizations of copolymers based on pyrrole and 3,4-ethylenedioxythiophene in aqueous micellar solution[J]. Synthetic Metals, 2012, 162(7):728-734.
[16] SARAC A S, CEBECI F C. Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylenedio-xythiophene)s and copolymers of pyrrole and 3,4-ethylened-ioxythiophene on carbon fibre microelectrodes[J]. Journal of Applied Electrochemistry, 2003, 33(3/4):295-301.
[17] LI M, ZHU H, MAO X H, et al. Electropolymerization of polypyrrole at the three-phase interline:influence of polymeri-zation conditions[J].Electrochimica Acta, 2013, 92:108-116.
[18] ZHU H, GAO L L, LI M, et al. Fabrication of free-standing conductive polymer films through dynamic three-phase interline electropolymerization[J]. Electrochemistry Communications, 2011, 13(12):1479-1483.
[19] LI C, IMAE T. Electrochemical and optical properties of the poly(3, 4-Ethylenedioxythiophene) film electropolymerized in an aqueous sodium dodecyl sulfate and lithium tetrafluoroborate medium[J]. Macromolecules, 2004, 37(7):2411-2416.
[20] BHAT D K, KUMAR M S. N and P doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors[J]. Journal of Materials Science, 2007, 42(19):8158-8162.
[21] ZHAO T K, SHE S F, JI X L, et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J]. Journal of Alloys and Compounds,2017,708:500-507.
[1] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[2] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚. 聚合物共混物增容技术及发展[J]. 材料工程, 2019, 47(2): 26-33.
[5] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[6] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[7] 田玉, 丁滔滔, 朱小龙, 郑广, 詹志明. NaV6O15纳米杆的制备及其电化学性能[J]. 材料工程, 2019, 47(10): 105-112.
[8] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
[9] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[10] 毛龙, 刘跃军, 姚进, 吴慧青, 白永康. 原位聚合改性纳米层状黏土/脂肪族聚酯嵌段共聚物复合材料的制备与性能[J]. 材料工程, 2018, 46(12): 70-77.
[11] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[12] 杜军, 宋永明, 张志军, 房轶群, 王伟宏, 王清文. MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响[J]. 材料工程, 2017, 45(12): 30-36.
[13] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
[14] 马强, 罗静, 陈元勋, 黄婧, 刘晓亚. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44(9): 109-114.
[15] 潘健, 肖长发, 赵健, 黄庆林, 任倩. 单轴取向乙烯-三氟氯乙烯共聚物纤维结晶结构与性能表征[J]. 材料工程, 2016, 44(7): 73-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn