Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 97-102    DOI: 10.11868/j.issn.1001-4381.2018.000925
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球状纳米二氧化钛/石墨烯复合材料的合成及导电性能
刘琳1, 李莹1, 鄂涛1, 杨姝宜1, 姜志刚2, 许丽岩2, 张天琪3
1. 渤海大学 辽宁省功能化合物合成与应用重点实验室, 辽宁 锦州 121013;
2. 锦州中信钛业股份有限公司, 辽宁 锦州 121000;
3. 大连晨致方舟科技发展有限公司, 辽宁 大连 116600
Synthesis and electrical conductivity of spherical nano-TiO2/graphene composites
LIU Lin1, LI Ying1, E Tao1, YANG Shu-yi1, JIANG Zhi-gang2, XU Li-yan2, ZHANG Tian-qi3
1. Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, Bohai University, Jinzhou 121013, Liaoning, China;
2. Jinzhou Zhongxin Titanium Industry Co., Ltd., Jinzhou 121000, Liaoning, China;
3. Dalian Chenzhi Ark Science and Technology Development Co., Ltd., Dalian 116600, Liaoning, China
全文: PDF(1890 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用改进的水热法制备二氧化钛/石墨烯(TiO2/G)复合导电材料,并研究水热温度以及石墨烯用量对TiO2/G复合材料导电性的影响。利用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和电化学阻抗谱等测试手段对复合材料的结构,微观形貌以及导电性能进行表征,并确定最佳的水热温度以及石墨烯的最佳添加量。结果表明:石墨烯添加量为5%(质量分数),水热温度为160℃,TiO2/G复合材料的导电性最佳,其电阻率为13.46Ω·cm。复合材料中TiO2纳米颗粒为球状的锐钛矿相,直径为100~200nm左右,且均匀生长在石墨烯片层表面。其中,TiO2纳米颗粒生长于石墨烯片层上,有效地阻止石墨烯片层的聚集,有利于石墨烯片层间形成导电网络,提高电子迁移效率,赋予二氧化钛复合材料优异的导电性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘琳
李莹
鄂涛
杨姝宜
姜志刚
许丽岩
张天琪
关键词 石墨烯二氧化钛导电性水热法复合导电材料    
Abstract:Titanium dioxide/graphene (TiO2/G) composite conductive materials were prepared by modified hydrothermal method. The effects of hydrothermal temperature and the amount of graphene on the electrical conductivity of the composites were investigated. The structure, microstructure and conductivity of the composites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and so on, and the optimum hydrothermal temperature and the optimum doping amount of graphene were determined. The results show that the electrical conductivity of TiO2/G is the best when the content of graphene is 5% (mass fraction), the hydrothermal temperature is 160℃, and its resistivity is 13.46Ω·cm. The nano TiO2 in the composite is a spherical anatase phase with a diameter of about 100-200nm, and it is grown uniformly on the lamellar surface of graphene. Among them, the nano TiO2 is grown on the graphene layers, which effectively prevents the agglomeration of the graphene layer, which is beneficial to the formation of conductive network between the graphene layers, improves the efficiency of electron migration, and endows the titanium dioxide composites with excellent electrical conductivity.
Key wordsgraphene    titanium dioxide    conductivity    hydrothermal method    composite conductive mat-erial
收稿日期: 2018-07-30      出版日期: 2019-08-22
中图分类号:  TQ15  
通讯作者: 鄂涛(1983-),男,副教授,博士,研究方向为石墨烯复合材料,联系地址:辽宁省锦州市太和区科技路19号渤海大学化学化工学院(121013),E-mail:263067201@qq.com     E-mail: 263067201@qq.com
引用本文:   
刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
LIU Lin, LI Ying, E Tao, YANG Shu-yi, JIANG Zhi-gang, XU Li-yan, ZHANG Tian-qi. Synthesis and electrical conductivity of spherical nano-TiO2/graphene composites. Journal of Materials Engineering, 2019, 47(8): 97-102.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000925      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/97
[1] 汪静茹,李文尧,姚宝殿. 水热法制备二氧化钛纳米管:形成机理、影响因素及应用[J]. 材料导报, 2016, 30(5):144-152. WANG J R, LI W Y, YAO B D. Hydrothermally produced titania nanotubes:formation mechanism, influence factorsand applications[J]. Materials Review, 2016, 30(5):144-152.
[2] HU J, LI H S, MUHAMMAD S, et al. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanoco-mposites and their photocatalytic performances[J]. Journal of Solid State Chemistry, 2017, 253:113-120.
[3] TACHIKAWA T, MINOHARA M, HIKITA Y, et al. Tuning band alignment using interface dipoles at the Pt/anatase TiO2 interface[J]. Advanced Materials, 2015, 27(45):7458-7461.
[4] CHEN B, MENG Y H, SHA J W, et al. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries:progress, challenges, and perspective[J]. Nanoscale, 2017, 10(4):34-68.
[5] ZHANG L X, ZHANG J, JIU H F, et al. Graphene-based hollow TiO2 composites with enhanced photocatalytic activity for removal of pollutants[J]. Journal of Physics and Chemistry of Solids, 2015, 86:82-89.
[6] GAN Z, WU X, MENG M, et al. Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites[J]. ACS Nano, 2014, 8(9):9304-9310.
[7] GU W L, LU F X, WANG C, et al. Face-to-face interfacial assembly of ultrathin g-C3N4 and anatase TiO2 nanosheets for enhanced solar photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2017, 9(34):28674-28684.
[8] ZHANG Z, REN L, HAN W J, et al. One-pot electrodeposition synthesis of ZnO/graphene composite and its use as binder-free electrode for supercapacitor[J]. Ceramics International, 2015, 41(3):4374-4380.
[9] ZHENG C C, HE C H, ZHANG H Y, et al. TiO2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries[J]. Ionics, 2014, 21(1):51-58.
[10] WANG H M, YAN Y, CHEN G. Integrating the hierarchical structure with well-dispersed conductive agents to realize synerg-istically enhanced electrode performance[J]. Journal of Materials Chemistry A, 2015, 3(19):10275-10283.
[11] RAMACHANDRAN R, MANI V, CHEN S M, et al. Recent trends in graphene based electrode materials for energy storage devices and sensors applications[J]. International Journal of Electrochemical Science, 2013, 8(8):11680-11694.
[12] 刘志彬. 二氧化钛-表面活性剂处理甲基橙的性能研究[J]. 哈尔滨商业大学学报(自然科学版), 2015, 31(2):177-182. LIU Z B. Research of removal methyl orange by titanium diox-ide-surfactant[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2015, 31(2):177-182.
[13] 龙梅,丛野,李轩科,等. 部分还原氧化石墨烯/二氧化钛复合材料的水热合成及其光催化活性[J]. 物理化学学报, 2013, 29(6):1344-1350. LONG M, CONG Y, LI X K, et al. Hydrothermal synthesis and photocatalytic activity of partially reduced graphene oxide/TiO2 composite[J]. Acta Physico-Chimica Sinica, 2013, 29(6):1344-1350.
[14] LI K, GAO S M, WANG Q Y, et al. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation[J]. ACS Applied Materials & Interfaces, 2015, 7(17):9023-9030.
[15] SHEN H L, CUI C, YING B L, et al. One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocompo-sites with enhanced photocatalytic activity[J]. Journal of Alloys & Compounds, 2014, 582(1):236-240.
[16] SHEN J F, SHI M, YAN B, et al. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide compo-sites[J]. Nano Research, 2011, 4(8):795-806.
[17] LAVRIC V, ISOPESCU R, MAURINO V, et al. A new model for nano-TiO2 crystals birth and growth in hydrothermal treat-ment using oriented attachment approach[J]. Crystal Growth & Design, 2017, 17(11):5640-5651.
[18] JIANG G O, LIN Z F, CHEN C, et al. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants[J]. Carbon, 2011, 49(8):2693-2701.
[19] LIU J, BAI H, WANG Y, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications[J]. Advanced Functional Materials, 2010, 20(23):4175-4181.
[20] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
[21] ZHANG Y, TANG Z R, FU X, et al. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation:what advantage does graphene have over its forebear carbon nanotube[J]. ACS Nano, 2011, 5(9):7426-7435.
[22] WU N Q, FU L, SU M, et al. Interaction of fatty acid mon-olayers with cobalt nanoparticles[J]. Nano Letters, 2015, 4(2):383-386.
[23] HE J J, WU D P, GAO Z Y, et al. Graphene sheets anchored with high density TiO2 nanocrystals and their application in quantum dot-sensitized solar cells[J]. RSC Advances, 2013, 4(4):2068-2072.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[3] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[4] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[5] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[6] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[7] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[8] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[9] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[10] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[11] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[12] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[13] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[14] 李涛, 李慧敏, 卢松涛, 吴晓宏. 炭黑/黑色TiO2复合材料的制备及其光催化性能[J]. 材料工程, 2020, 48(11): 39-45.
[15] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn