Please wait a minute...
材料工程  2019, Vol. 47 Issue (9): 132-138    DOI: 10.11868/j.issn.1001-4381.2018.000943
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
周莉1, 柳汀1,2, 郑典亮1, 许勇刚3
1. 吉林化工学院 航空工程学院, 吉林 吉林 132102;
2. 厦门大学 航空航天学院, 福建 厦门 361005;
3. 电磁散射重点实验室, 上海 200438
Absorbing properties of CIPs coatings and oxides modified by selective surface technology
ZHOU Li1, LIU Ting1,2, ZHENG Dian-liang1, XU Yong-gang3
1. School of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132102, Jilin, China;
2. School of Aerospace Engineering, Xiamen University, Xiamen 361005, Fujian, China;
3. Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438, China
全文: PDF(2594 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
摘要 针对吸波涂层氧化腐蚀现象,提出一种基于选择表面的周期结构涂层维修工艺。利用腐蚀法,在以羰基铁粉(CIPs)为吸收剂的吸波涂层表面制备CIPs及其氧化物涂层。用扫描电子显微镜(SEM)对腐蚀后颗粒的形貌进行了分析。测试了8~18GHz下混合颗粒的复介电常数和复磁导率,并用等效介质理论计算氧化涂层的参数。分析腐蚀和维修工艺对反射损耗(RL)的影响。结果表明:当CIPs涂层表面被氧化时,随着氧化涂层厚度的增加,涂层的吸波性能减弱,反射损耗增量值约为2dB。当涂层厚度为0.8mm时,维修效果不理想,若涂层厚度增加至1mm,且氧化涂层厚度为0.1mm时,维修效果较好,体现为10~18GHz频率范围内的吸波带宽增加,反射损耗相应减小约为2dB。
E-mail Alert
关键词 吸波涂层羰基铁粉腐蚀选择表面工艺反射损耗    
Abstract:The periodic structure coating maintenance process based on the selective surface was proposed. The coating of oxidized Fe and carbonyl iron particles (CIPs) was obtained by the corrosion method. The morphology of particles after corrosion was characterized by the scanning electron microscopy (SEM). The permittivity and permeability of the absorber adding the hybrid particles were tested in 8-18GHz, and the oxidized coating parameter could be calculated using the effective medium rule. Effects of the corrosion process and the maintenance process were analysed. The results show that as the CIPs oxidized in the coating surface, the coating's absorbing property was weakened as the oxidization thickness is increased, and the increment value of reflection loss (RL) is about 2dB. When the coating thickness is set as 0.8mm, the maintenance performance is unsuitable. However, if the coating thickness is increased to 1mm and the oxidization thickness is 0.1mm, the maintenance performance is improved, then the absorbing band can be widened in 10-18GHz and the RL decrement is about 2dB correspondingly.
Key wordsabsorbing coating    carbonyl iron particle    corrosion    selective surface technology    reflection loss
收稿日期: 2018-08-07      出版日期: 2019-09-18
中图分类号:  TB34  
通讯作者: 柳汀(1984-),男,博士研究生,主要研究方向为功能材料、超材料设计及应用研究,联系地址:吉林省吉林市昌邑区双吉街吉林化工学院航空工程学院(132102),     E-mail:
周莉, 柳汀, 郑典亮, 许勇刚. 选择表面工艺改性的CIPs涂层及其氧化物的吸波性能[J]. 材料工程, 2019, 47(9): 132-138.
ZHOU Li, LIU Ting, ZHENG Dian-liang, XU Yong-gang. Absorbing properties of CIPs coatings and oxides modified by selective surface technology. Journal of Materials Engineering, 2019, 47(9): 132-138.
链接本文:      或
[1] YUAN X, CHENG L, ZHANG L. Electromagnetic wave absor-bing properties of SiC/SiO2, composites with ordered inter-filled structure[J]. Journal of Alloys & Compounds, 2016, 680:604-611.
[2] CHOI I, LEE D, DAI G L. Optimum design method of a nano-composite radar absorbing structure considering dielectric properties in the X-band frequency range[J]. Composite Structures, 2015, 119:218-226.
[3] GAO X, LI J, GAO Y, et al. Microwave absorbing properties of alternating multilayer composites consisting of poly(vinyl chlo-ride) and multi-walled carbon nanotube filled poly(vinyl chloride) layers[J]. Composites Science & Technology, 2016, 130:10-19.
[4] 于丽新,兰晓琳,邵枫,等. MWCNT/FeNi复合纳米线制备及其雷达微波和工频电磁波吸收性能[J].材料工程, 2018,46(8):64-70. YU L X, LAN X L, SHAO F, et al. MWCNT/FeNi composite nanowires for efficient electromagnetic wave absorption on microwave and power frequency[J]. Journal of Materials Engineering, 2018, 46(8):64-70.
[5] LIANG C Y, WANG Z J. Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J]. ACS Applied Materials and Interfaces, 2017, 9(46):40690-40696.
[6] LIANG C Y, GOU Y J, WU L N, et al. Nature of electro-magnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation[J]. The Journal of Physical Chemistry C, 2016,120(24):12967-12973.
[7] LAN X L, LIANG C Y, WU M S, et al. Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves[J]. Journal of Physical Chemistry C, 2018, 122(32):18537-18544.
[8] FENG J, ZHANG Y, WANG P, et al. Oblique incidence perfor-mance of radar absorbing honeycombs[J]. Composites Part B Engineering, 2016, 99:465-471.
[9] LIU L D, DUAN Y P, LIU S H, et al. Microwave absorbing properties of one thin sheet employing carbonyl-iron powder and chlorinated polyethylene[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(13):1736-1740.
[10] WANG H Y, ZHU D M, ZHOU W C, et al. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials[J]. Journal of Magnetism and Magnetic Materials, 2015, 375:111-116.
[11] XU Y G, YAN Z Q, ZHANG D Y. Microwave absorbing prop-erty of a hybrid absorbent with carbonyl irons coating on the graphite[J]. Applied Surface Science, 2015, 356:1032-1038.
[12] YAN Z, CAI J, XU Y, et al. Microwave absorption property of the diatomite coated by Fe-CoNiP films[J]. Applied Surface Science, 2015, 346:77-83.
[13] ZHOU Y, XIE H, ZHOU W, et al. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles[J]. Journal of Magnetism and Magnetic Materials, 2018,446:143-149.
[14] LONG C, XU B C, HAN C Z, et al. Flaky core-shell particles of iron@iron oxides for broadband microwave absorbers in S and C bands[J]. Journal of Alloys and Compounds, 2017, 709:735-741.
[15] XUE D S, LI F S, FAN X L, et al. Bianisotropy picture of higher permeability at higher frequencies[J]. Chinese Physics Letter, 2008, 25(11):4120-4123.
[16] WEN F S, ZUO W L, YI H B, et al. Microwave-absorbing prop-erties of shape-optimized carbonyl iron particles with maximum microwave permeability[J]. Physica B:Condensed Matter, 2009, 404(20):3567-3570.
[17] LV H L, JI G B, LI X G, et al. Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method[J]. Journal of Magnetism and Magnetic Materials, 2015, 374:225-229.
[18] 韩瑞,位建强,韩相华,等. 片状羰基铁/石蜡复合材料的高频磁性[J]. 科学通报, 2010, 55(26):2570-2575. HAN R, WEI J Q, HAN X H, et al. High-frequency magnetic properties of carbonyl-iron particles/paraffin composite[J]. Chinese Science Bulletin, 2010, 55(26):2570-2575.
[19] ZHANG B S, FENG Y, XIONG J, et al. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz[J]. IEEE Transactions on Magnetics, 2006, 42(7):1778-1781.
[20] QING Y C, ZHOU W C, LUO F, et al. Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(1):25-28.
[21] WANG M H, LI Q H, LI X G, et al. Effect of oxygen-cont-aining functional groups in epoxy/reduced graphene oxide composite coatings on corrosion protection and antimicrobial properties[J]. Applied Surface Science, 2018, 448:351-361.
[22] ZHAN Y Q, ZHANG J M, WAN X Y, et al. Epoxy composites coating with Fe3O4 decorated graphene oxide:Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance[J]. Applied Surface Science, 2018, 436:756-767.
[23] PARHIZKAR N, SHAHRABI T, RAMEZANZADEH B. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film[J]. Corrosion Science, 2017, 123:55-75.
[24] XU Y G, YUAN L M, CAI J, et al. Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler[J]. Journal of Magnetism and Magnetic Materials, 2013, 343:239-244.
[25] LIU T, ZHOU P H, XIE J L, et al. Extrinsic permeability of Fe-based flake composites from intrinsic parameters:A comparison between the aligned and random cases[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(4):519-523.
[26] WU L Z, DING J, JIANG H B, et al. Particle size influence to the microwave properties of iron based magnetic particulate composites[J]. Journal of Magnetism and Magnetic Materials, 2005, 285(1-2):233-239.
[27] ZIMMERMAN D T, CARDELLINO J D, CRAVENER K T, et al. Microwave absorption in percolating metal-insulator comp-osites[J]. Applied Physics Letters, 2008, 93(21):214103-214106.
[28] KIM S S, JO S B, GUEON K I, et al. Complex permeability and permittivity and microwave absorption of ferrite-rubber composites at X-band frequencies[J]. IEEE Transactions on Magnetics, 1991, 27(6):5462-5464.
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[4] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[5] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[6] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[7] 刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展[J]. 材料工程, 2020, 48(10): 17-27.
[8] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[9] 董建民, 李嘉荣, 韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程, 2020, 48(1): 77-83.
[10] 林梦晓, 张杰, 蒋全通, 李佳润, 路东柱, 侯保荣, 孙园园. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J]. 材料工程, 2020, 48(1): 98-107.
[11] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[12] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[13] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[14] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[15] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持