Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 84-91    DOI: 10.11868/j.issn.1001-4381.2018.000957
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于制备钨钼复合靶材的SPS烧结连接
黄昊, 赵晶晶, 韩翠柳, 杨新宇, 潘亚飞, 张久兴
合肥工业大学 材料科学与工程学院, 合肥 230009
SPS sintering & joining based on preparation of tungsten-molybdenum composite target
HUANG Hao, ZHAO Jing-jing, HAN Cui-liu, YANG Xin-yu, PAN Ya-fei, ZHANG Jiu-xing
College of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
全文: PDF(5661 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用放电等离子烧结(SPS)制备钨(W)和钛锆钼(TZM)连接件。通过高能球磨和调节温度烧结出高致密度纯W块体,相对密度可达97.0%以上。在制备的纯W块体表面铺置TZM合金粉末,烧结TZM的同时对W和TZM进行连接,实现了异种金属块体与粉末的一步烧结连接。研究烧结温度和降温速率对W/TZM合金接头的微观组织和力学性能的影响。结果表明:W与TZM结合良好,烧结温度在1400~1600℃范围内时,W/TZM接头的剪切强度随烧结温度的升高而增大;在相同烧结温度下,采用快速冷却方式获得的接头剪切强度高于缓慢冷却接头的;当烧结温度为1600℃并采取快速冷却降温时,W/TZM接头的剪切强度达到最大,为159.7 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄昊
赵晶晶
韩翠柳
杨新宇
潘亚飞
张久兴
关键词 SPSTZM合金烧结靶材扩散连接    
Abstract:High energy ball milling and spark plasma sintering(SPS) were used to make high density pure W bulk, the relative density of samples can reach more than 97.0%. TZM alloy powder was laid on the surface of the W bulk, SPS was used to sinter TZM and join W with TZM at the same time. This experiment realized the joining between W bulk and TZM powder without interlayer. The effects of sintering temperature and cooling rate on the microstructure and mechanical properties of W/TZM alloy joints were investigated.The results show that W is well joined with TZM alloy, and there are no holes, microcracks and unwelded defects in the interface. When the sintering temperature is within the scope of 1400-1600℃, W/TZM joints shear strength increases with the increase of sintering temperature. The shear strength of the joints obtained by rapid cooling is higher than that of the joints with slow cooling at the same sintering temperature. When the sintering temperature is 1600℃ and taken rapid cooling, the shear strength of joint is higher than that of the other samples, the maximum shear strength is 159.7 MPa.
Key wordsSPS    tungsten    TZM alloy    sintering    target    diffusion bonding
收稿日期: 2018-08-08      出版日期: 2020-03-18
中图分类号:  TG456.9  
通讯作者: 张久兴(1962-),男,教授,博士,从事专业:放电等离子烧结新技术、新材料,联系地址:安徽省合肥市包河区屯溪路193号合肥工业大学材料学院(230009),E-mail:zjiuxing@hfut.edu.cn     E-mail: zjiuxing@hfut.edu.cn
引用本文:   
黄昊, 赵晶晶, 韩翠柳, 杨新宇, 潘亚飞, 张久兴. 基于制备钨钼复合靶材的SPS烧结连接[J]. 材料工程, 2020, 48(3): 84-91.
HUANG Hao, ZHAO Jing-jing, HAN Cui-liu, YANG Xin-yu, PAN Ya-fei, ZHANG Jiu-xing. SPS sintering & joining based on preparation of tungsten-molybdenum composite target. Journal of Materials Engineering, 2020, 48(3): 84-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000957      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/84
[1] 高丽娜.CT机X射线管用旋转阳极靶材市场研究与预测[J].电子设计工程,2012,20(19):168-170. GAO L N.Market research and forecast on the rotating anode target of X-ray tube used for CT[J].Electronic Design Engineering,2012,20(19):168-170. 图111600℃快速冷却试样断口的元素面分布(a)W/TZM接头;(b)Mo;(c)W;(d)Ti;(e)Zr;(f)C Fig.11 Elemental EDS mappings of W/TZM joint obtained at 1600℃ with fast cooling (a)W/TZM joint;(b)Mo;(c)W;(d)Ti;(e)Zr;(f)C
[2] EITER J,SCHATTE J,GLATZ W,et al.Rotary X-ray anode and production method:US9767983[P].2017-09-19.
[3] GUENTER A,ING G E D.X-ray rotating anode:DE3238352[P].1984-04-19.
[4] 彭志辉.国外X射线管用旋转阳极靶概况[J].稀有金属与硬质合金,1987(增刊1):124-127,132. PENG Z H.General situation of rotating anode target for X ray tube abroad[J].Rare Metals and Cemented Carbides,1987(Suppl 1):124-127,132.
[5] WHITAKER S.X-ray anode surface temperatures:the effect of volume heating[J].Proceedings of SPIE-the International Society for Optical Engineering,1988,914:565-575.
[6] TORRES F E,WHITAKER S.Numerical analysis of the temperature distribution in a liquid-cooled rotating X-ray anode[C]//Application of Optical Instrumentation in Medicine Ⅻ.San Diego, US:The International Society for Optics and Engineering,1984:294-303.
[7] 方洪渊,冯吉才.材料连接过程中的界面行为[M].哈尔滨:哈尔滨工业大学出版社,2005. FANG H Y,FENG J C.Interface behavior during material connection[M].Harbin:Harbin Institute of Technology Press,2005.
[8] 肖代红,刘彧,余永新,等.放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J].材料工程,2018,46(3):22-27. XIAO D H,LIU Y,YU Y X,et al.Effect of spark plasma sintering on microstructure and properties of TiB2/AlCoCrFeNi composites[J]. Journal of Materials Engineering,2018,46(3):22-27.
[9] ZHONG Z H,HINKIO T,NOZAWA T,et al.Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer[J].Journal of Alloys & Compounds,2010,489(2):545-551.
[10] RATHEL J,HERRMANN M,BECKERT W.Temperature distribution for electrically conductive and non-conductive materials during field assisted sintering(FAST)[J].Journal of the European Ceramic Society,2009,29(8):1419-1425.
[11] 席晓丽,郭艳群,聂祚仁,等.在SPS过程中碳污染的研究[J].北京工业大学学报,2004,30(1):59-62. XI X L,GUO Y Q,NIE Z R,et al.Study on the carbon pollution in SPS[J].Journal of Beijing University of Technology,2004,30(1):59-62.
[12] 张浩,薛丽红,严有为.机械活化辅助放电等离子烧结钨细晶块体材料的初步研究[C]//第七届国际先进成型与材料加工技术国际研讨会.武汉:先进成型技术学会,2010. ZHANG H,XUE L H,YAN Y W.Preliminary study on mechanically activated spark plasma sintering of bulk tungsten with fine grain size[C]//The 7th International Conference on Advanced Molding and Materials Processing Technology.Wuhan:Advanced Forming Technology Society,2010.
[13] 王迎春,李树奎,王富耻,等.放电等离子烧结温度对钨合金的组织及动态力学性能的影响[J].稀有金属材料与工程,2010,39(10):1807-1810. WANG Y C,LI S K,WANG F C,et al.Effects of spark plasma sintering temperature on microstructure and dynamic mechanical properties of 93W-4.9Ni-2.1Fe alloy[J].Rare Metal Materials and Engineering,2010,39(10):1807-1810.
[14] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997:289. HUANG P Y.Principle of powder metallurgy[M].Beijing:Metallurgical Industry Press,1997:289.
[15] 周宇航,胡平,常恬,等.钼合金强韧化方式及机理研究进展[J].功能材料,2018,49(1):1026-1032. ZHOU Y H,HU P,CHANG T,et al.Research progress of strengthening and toughening modes and mechanisms of molybdenum alloys[J].Journal of Functional Materials,2018,49(1):1026-1032.
[16] 寸敏敏,陈文革,颜国君,等.多次烧结对钨铜合金组织与性能的影响[J].粉末冶金技术,2017,35(4):243-248. CUN M M,CHEN W G,YAN G J,et al.Influence of multiple sintering on microstructure and properties of W-Cu alloy[J].Powder Metallurgy Technology,2017,35(4):243-248.
[17] OMORI M. Sintering,consolidation,reaction and crystal growth by the spark plasma system(SPS)[J]. Materials Science and Engineering:A,2000,287(2):183-188.
[18] BUSBY J T,LEONARD K J,ZINKLE S J. Radiation-damage in molybdenum-rhenium alloys for space reactor applications[J]. Journal of Nuclear Materials,2007,366(3):388-406.
[19] ARMSTRONG D E J,YI X,MARQUIS E A,et al. Hardening of self ion implanted tungsten and tungsten 5-wt% rhenium[J]. Journal of Nuclear Materials,2013,432(1/3):428-436.
[1] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[2] 王子明, 王东星, 陆姗姗, 王鑫, 董星龙. 镍基Ni-Ag复合纳米粒子直流电弧等离子体法制备及其烧结电学性能[J]. 材料工程, 2020, 48(3): 92-97.
[3] 赵枢明, 薛铠华, 杨通, 张雪, 姚山. 烧结颈分布对3D打印覆膜Al2O3零件强度的影响[J]. 材料工程, 2019, 47(8): 132-140.
[4] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[5] 陈鹏, 朱小刚, 吴甲民, 王联凤, 史玉升. 基于SLS/CIP工艺SiC陶瓷的制备及其性能[J]. 材料工程, 2019, 47(3): 87-93.
[6] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[7] 刘艳芳, 冯可芹, 周虹伶, 柯思璇. 烧结温度对大电流电场烧结制备W-Mo-Cu合金的影响[J]. 材料工程, 2019, 47(11): 135-140.
[8] 孙翱魁, 刘跃军, 陈晴柔. 钼铜复合粉末的致密化及性能[J]. 材料工程, 2019, 47(1): 112-118.
[9] 陈敬炎, 吴甲民, 陈安南, 肖欢, 李国锐, 刘梦月, 李晨辉, 史玉升. 基于激光选区烧结的煤系高岭土多孔陶瓷的制备及其性能[J]. 材料工程, 2018, 46(7): 36-43.
[10] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[11] 金玉花, 甘瑞根, 陈飞, 邵庆丰, 王希靖, 郭廷彪. 搅拌摩擦焊辅助Al/Zn/Mg接头扩散连接[J]. 材料工程, 2018, 46(3): 55-60.
[12] 倪秀英, 赵军, 孙加林, 李洪江, 侯冠明, 田源. 梯度结构Al2O3-(W,Ti) C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备[J]. 材料工程, 2018, 46(2): 50-56.
[13] 李麒, 喻彪, 郭丰伟, 曹腊梅, 益小苏. Cr3C2添加剂对ZrB2-SiC复合陶瓷性能的影响[J]. 材料工程, 2018, 46(12): 78-84.
[14] 于文霖, 吴一, 吴新泽, 莫培程, 虞琦峰. 烧结温度对cBN-Al-Ti体系原位合成PcBN的影响[J]. 材料工程, 2018, 46(11): 90-95.
[15] 王跃明, 唐求豪, 闫志巧, 王芬. 真空室压力对低压等离子喷涂成形钨靶材显微组织及性能的影响[J]. 材料工程, 2018, 46(10): 104-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn