Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 41-47    DOI: 10.11868/j.issn.1001-4381.2018.000960
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究
董慧民1, 闫丽2, 安学锋2, 钱黄海1, 苏正涛1, 益小苏2
1. 中国航发北京航空材料研究院 减振降噪材料及应用技术航空科技重点实验室, 北京 100095;
2. 中航复合材料有限责任公司, 北京 101300
Low velocity impact response and post impact compression behaviour of ESTM-fabric/3266 composites
DONG Hui-min1, YAN Li2, AN Xue-feng2, QIAN Huang-hai1, SU Zheng-tao1, YI Xiao-su2
1. Aviation Key Laboratory of Science and Technology on Materials and Application Research for Vibration and Noise Reduction, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. AVIC Composite Corporation Ltd., Beijing 101300, China
全文: PDF(9041 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 基于"离位"技术,分别开发两种新型聚醚砜(PES)点阵附载型(ES-L)和PES无规附载U3160织物型(ES-R)ESTM-fabric织物,采用RTM工艺制备ESTM-fabric织物增强3266中温环氧树脂基复合材料(ESTM-fabric/3266),对其进行冲击阻抗及冲击后压缩测试,并利用荧光显微镜、SEM结果分析离位增韧机理,还对比研究未增韧U3160织物增强3266中温环氧树脂基复合材料的性能。低速冲击测试结果表明:相比未增韧U3160/3266(ES-U),ESTM-fabric/3266的起始损伤阈值载荷显著提高,冲击损伤面积明显减少,裂纹扩展更加平缓,且以层内基体裂纹、纤维束内的纤维-基体脱粘和局部铺层断裂为主。ES-L的CAI值比ES-U增大了37%。ES-R层间出现均布式相反转结构,ES-L层间存在硬相区(富BMI连续相)和软相区(富PES连续相/3266相反转结构);ES-L的相结构能够更加有效地缓解应力集中、耗散冲击能量,从而使其表现出最佳的损伤阻抗和损伤容限性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董慧民
闫丽
安学锋
钱黄海
苏正涛
益小苏
关键词 增韧技术冲击行为损伤容限损伤模式树脂转移模塑(RTM)    
Abstract:A novel kind of lattice-distributed ESTM-fabrics (ES-L) and random-distributed ESTM-fabrics (ES-R) were developed by using polyethersulfone (PES) and U3160 according to ex-situ toughening technology. ESTM-fabrics reinforced 3266 moderate temperature curing epoxy resin composites (ESTM-fabric/3266) were prepared through RTM process. Impact resistance and residual strength of ESTM-fabric/3266 were studied and the ex-situ toughening mechanism was analyzed by fluorescence microscope and SEM. The untoughened U3160 fabrics reinforced 3266 moderate temperature curing epoxy resin composites were studied to compare performance of composites as well. The result of low velocity impact testing shows that the toughened ESTM-fabric/3266 composites exhibit the higher delamination damage threshold load, the lower projected delaminated areas, the slower damage development, compared to U3160/3266 composites without toughener PES (ES-U).The major failure mode is intralaminar crack (transverse matrix cracking), debonding between fibre and matrix in fiber-bundle regions as well as local ply breakage along with ply-matrix debonding.The ES-L allows an increase of 37% in CAI compared to ES-U. Microstructural observation of damage zone reveals that ES-R composite has a homogeneous distribution of phase inversion in the interlaminar regions while ES-L composite exhibits a hard phase composing of the 3266 epoxy resin continuous matrix and a soft phase composing of the nodular structure of BMI in the 3266 epoxy resin continuous matrix. The excellent impact resistance and damage tolerance of ES-L composite are due to synergistic effects of hard phase and soft phase, which can release the stress concentration,give the extra strain energy dissipated and subsequently terminate crack via crack blunting mechanism.
Key wordstoughening technology    impact behaviour    damage tolerance    damage mode    resin transfer molding (RTM)
收稿日期: 2018-08-10      出版日期: 2020-01-09
中图分类号:  TB332  
基金资助: 
通讯作者: 益小苏(1953-),男,博士,教授,博士生导师,主要从事树脂基复合材料方向研究工作,联系地址:北京市81信箱3分箱(100095),E-mail:xiaosu.yi@sohu.cn     E-mail: xiaosu.yi@sohu.cn
引用本文:   
董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛, 益小苏. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1): 41-47.
DONG Hui-min, YAN Li, AN Xue-feng, QIAN Huang-hai, SU Zheng-tao, YI Xiao-su. Low velocity impact response and post impact compression behaviour of ESTM-fabric/3266 composites. Journal of Materials Engineering, 2020, 48(1): 41-47.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000960      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/41
[1] 益小苏. 先进树脂基复合材料高性能化理论与实践[M]. 北京:国防工业出版社, 2011. YI X S. Theory and application of high-performance polymer matrix composites[M]. Beijing:National Defense Industry Press, 2011.
[2] 董慧民,安学锋,益小苏,等. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5):89-100. DONG H M, AN X F, YI X S, et al. Progress in research on low velocity impact properties of fibre reinforced polymer matrix composite[J]. Journal of Materials Engineering, 2015, 43(5):89-100.
[3] 董慧民,益小苏,安学锋,等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285. DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):273-285.
[4] HUNSTON D L, MOULTON R J, JOHNSTON N J, et al. Matrix resin effects in composite delamination:mode Ⅰ fracture aspects[M]//Toughened Composites:Symposium on Toughened Composites, ASTM STP 937.Houston:ASTM International, 1987:74-94.
[5] 益小苏,许亚洪,唐邦铭."离位"树脂转移模塑成型加工方法:CN02101216.4[P]. 2002-09-18. YI X S, XU Y H, TANG B M. An ex-situ processing method for resin transfer molding:CN02101216.4[P]. 2002-09-18.
[6] 唐邦铭,益小苏,许亚洪,等. "离位"树脂膜渗透成型加工方法:CN03105536.2[P]. 2003-01-24. TANG B M, YI X S, XU Y H, et al. An ex-situ processing method for resin film infusion:CN03105536.2[P]. 2003-01-24.
[7] 益小苏,安学锋,张明,等.一种液态成型复合材料用预制织物及其制备方法:CN200810000135.2[P]. 2008-01-04. YI X S, AN X F, ZHANG M, et al. A method to manufacturing of composite prefabricated reinforced fabric for liquid molding:CN 200810000135.2[P]. 2008-01-04.
[8] 益小苏,刘刚,张尧州,等.一种促进树脂流动的高性能预制增强织物及制备方法:CN201010581859.8[P]. 2010-12-13. YI X S, LI G, ZHANG Y Z, et al. A promoter resin flow performance preparation of prefabricated reinforced fabric:CN201010581859.8[P]. 2010-12-13.
[9] 安学峰,张晨乾. PES颗粒层间增韧碳纤维/双马树脂RTM复合材料[J]. 复合材料学报, 2013, 30(增刊):65-69. AN X F, ZHANG C Q. CF/BMI RTM composite materials toug-hened by interlayers of PES particle[J]. Acta Materiae Compo-sitae Sinica, 2013, 30(Suppl):65-69.
[10] 闫丽,安学锋,董慧民,等. RTM用ES-Fabric增强织物的制备及其复合材料性能研究[J]. 化工新型材料, 2016(4):94-96. YAN L,AN X F, DONG H M, et al. Preparation of ES-fabric reinforced fabric for RTM process and study on the property of the composite[J]. New Chemical Materials, 2016(4):94-96.
[11] 闫丽,安学锋,董慧民,等. "离位"增韧T800H/5228ES复合材料的制备与性能研究[J]. 化工新型材料, 2015(9):55-57. YAN L,AN X F, DONG H M, et al. Study on preparation and property of T800H/5228ES composites by ex-situ toughening method[J]. New Chemical Materials, 2015(9):55-57.
[12] HAYES B S, HAYES B S, GAMMON L M. Optical microscopy of fiber-reinforced composites[M]. OH:Materials Park ASM International, 2010.
[13] SCHOEPPNER G A, ABRATE S. Delamination threshold loads for low velocity impact on composite laminates[J]. Composites:Part A, 2000, 31(9):903-915.
[14] KWON Y S, SANKAR B V. Indentation-flexure and low-velocity impact damage in graphite epoxy laminates[J]. Journal of Composites Technology & Research, 1993, 15(2):101-111.
[15] BIENIA? J, JAKUBCZAK P, SUROWSKA B. Comparison of polymer composites behavior to low-velocity impact and quasi-static indentation[J]. Composites Theory and Practice, 2013, 13(3):155-159.
[16] 陈锡花,唐国翌,阎允杰,等. 碳纤维/环氧树脂复合材料在爆炸冲击下的微损伤分析[J]. 清华大学学报(自然科学版), 2000, 40(5):114-117. CHEN X H, TANG G Y, YAN Y J, et al. Damage in carbon fiber/epoxy resin composites under explosive impact[J]. Journal of Tsinghua University(Science and Technology), 2000, 40(5):114-117.
[1] 马宏毅, 安学锋, 益小苏. “离位”增韧复合材料准静态压入损伤特性研究[J]. 材料工程, 2012, 0(9): 88-91,98.
[2] 房卫萍, 陈沦, 史耀武, 虞文军, 毛智勇, 唐振云. 损伤容限钛合金的研究进展及应用现状[J]. 材料工程, 2010, 0(9): 95-98.
[3] 张纪奎, 程小全, 郦正能. 基于损伤容限设计的机体金属材料力学性能综合表征与评价[J]. 材料工程, 2010, 0(7): 49-53.
[4] 陈列, 熊峻江, 程泽林. 复合材料单搭接头的剪切强度对比实验研究[J]. 材料工程, 2009, 0(11): 31-35.
[5] 袁鸿, 余槐, 王金雪, 王新南, 朱知寿, 李晓红. TC4-DT钛合金电子束焊接接头的损伤容限性能[J]. 材料工程, 2007, 0(8): 17-19.
[6] 张同华, 杨璧玲, 彭永超, 晏雄. 基于声发射检测技术的PE/PE自增强复合材料破损机理分析[J]. 材料工程, 2007, 0(1): 56-59,64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn