Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 115-122    DOI: 10.11868/j.issn.1001-4381.2018.000971
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
负载高性能MnO2@Ni(OH)2核/壳纳米线阵列碳布电极的非对称超级电容器性能研究
闫慧君1,2, 白建伟2, 王玉1, 周红霞1, 景晓燕2, 王君2, 白雪峰1
1. 黑龙江省科学院石油化学研究院, 哈尔滨 150040;
2. 哈尔滨工程大学 材料科学与化学工程学院, 哈尔滨 150001
High performance MnO2@Ni(OH)2 core/shell structure nanowire arrays supported on carbon cloth as advanced electrodes for asymmetric supercapacitors
YAN Hui-jun1,2, BAI Jian-wei2, WANG Yu1, ZHOU Hong-xia1, JING Xiao-yan2, WANG Jun2, BAI Xue-feng1
1. Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin 150040, China;
2. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
全文: PDF(5544 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过两步法在碳布(CC)上成功制备MnO2@Ni(OH)2核/壳纳米线阵列(NWAs),并应用于柔性全固态非对称超级电容器(ASCs)中。Ni(OH)2纳米片整齐地包覆在每个MnO2纳米线上,与纯MnO2纳米线相比获得了更高的比电容值(在扫描速率为5mV/s时,比电容值为432.8F/g)。该电极材料同时具有良好的循环稳定性,在5A/g下充放电2000圈后,仍保持初始比电容的92.3%。自组装的MnO2@Ni(OH)2//MnO2 ASC具有1.8V的宽电势窗口,输出了高能量密度(69.2Wh/kg)和高功率密度(当54.6Wh/kg时4.5kW/kg)。结果表明,MnO2@Ni(OH)2 NWAs以碳布作为柔性基底,拥有高比表面积可以被大规模地应用在超级电容器领域中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫慧君
白建伟
王玉
周红霞
景晓燕
王君
白雪峰
关键词 MnO2@Ni(OH)2纳米线阵列核/壳结构碳布非对称电容器能量存储    
Abstract:MnO2@Ni(OH)2 core/shell structure nanowire arrays (NWAs) supported on carbon cloth were successfully synthesized by a two-step method, applied in flexible all-solid-state asymmetric supercapacitors (ASCs). The Ni(OH)2 nanosheets wrapped on the surface of each MnO2 nanowire uniformly, which can increase the capacitance of MnO2 NWAs to a high specific capacitance of 432.8F/g at 5mV/s. The electrode also exhibits good cycling ability, 92.3% of the initial capacity can be remained after 2000 cycles at 5A/g. The assembled MnO2@Ni(OH)2//MnO2 asymmetric device with a maximum voltage of 1.8V has been fabricated, delivering both high energy density (69.2Wh/kg) and power density (4.5kW/kg at 54.6Wh/kg). These results show that MnO2@Ni(OH)2 NWAs with large specific surface area, combined with the flexible carbon cloth substrate can be applied in supercapacitor field in large scale.
Key wordsMnO2@Ni(OH)2 nanowire arrays    core/shell structure    carbon cloth    asymmetric super-capacitor    energy storage
收稿日期: 2018-08-12      出版日期: 2019-11-21
中图分类号:  O611.64  
基金资助: 
通讯作者: 白雪峰(1964-),男,研究员,博士,主要从事工业催化方面研究,联系地址:黑龙江省科学院石油化学研究院(150040),E-mail:tommybai@126.com     E-mail: tommybai@126.com
引用本文:   
闫慧君, 白建伟, 王玉, 周红霞, 景晓燕, 王君, 白雪峰. 负载高性能MnO2@Ni(OH)2核/壳纳米线阵列碳布电极的非对称超级电容器性能研究[J]. 材料工程, 2019, 47(11): 115-122.
YAN Hui-jun, BAI Jian-wei, WANG Yu, ZHOU Hong-xia, JING Xiao-yan, WANG Jun, BAI Xue-feng. High performance MnO2@Ni(OH)2 core/shell structure nanowire arrays supported on carbon cloth as advanced electrodes for asymmetric supercapacitors. Journal of Materials Engineering, 2019, 47(11): 115-122.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000971      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/115
[1] JIANG H, LI C Z, SUN T, et al. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures[J]. Chemical Communications, 2012, 48:2606-2608.
[2] WANG G P, ZHANG L, ZHANG J J, et al. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41:797-828.
[3] EDDY A L M, SHAIJUMON M M, GOWDA S R, et al. Coaxial Mn CV carbon nanotube array electrodes for high-performance lithium batteries[J]. Nano Letters, 2009, 9:1002.
[4] FAN Z J, LIU Y, YAN J, et al. Template-directed synthesis of pillared-porous carbon nanosheet architectures:high-performance electrode materials for supercapacitors[J]. Materials Views, 2012, 2:419-424.
[5] YAN H J, BAI J W, WANG B, et al. Electrochemical reduction approach-based 3D graphene/Ni(OH)2 electrode for high-performance supercapacitors[J]. Electrochimica Acta, 2015, 154:9-16.
[6] YANG C, SUN M Q, WANG X, et al. A novel flexible supercapacitor based on cross-linked PVDF-HFP porous organogel electrolyte and carbon nanotube paper@π-conjugated polymer film electrodes[J]. ACS Sustainable Chemistry & Engineering, 2015, 3:2067-2076.
[7] BAI J W, YAN H J, LIU Q, et al. Synthesis of layered α-Ni(OH)2/RGO composites by exfoliation of α-Ni(OH)2 for high-performance asymmetric supercapacitors[J]. Materials Chemistry and Physics, 2018, 204:18-26.
[8] WANG Z Y, WANG F P, TU J H, et al. Nickel foam supported hierarchical mesoporous MnO2/Ni(OH)2 nanosheet networks for high performance supercapacitor electrode[J]. Materials Letters, 2016, 171:10-13.
[9] BAO L H, ZANG J F, LI X D. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes[J]. Nano Letters, 2011, 11(3):1215-1220.
[10] SIEGEL A C, PHILLIPS S T, DICKEY M D, et al. Foldable printed circuit boards on paper substrates[J]. Advanced Functional Materials, 2010, 20:28-35.
[11] CHEN J Z, XU J L, ZHOU S, et al. Amorphous nanostructrured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitor[J]. Nano Energy, 2016, 21:145-153.
[12] CHEN H, HU L F, YAN Y, et al. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance[J]. Advanced Energy Materials, 2013, 3:1636-1646.
[13] ZHU G Y, HE Z, CHEN J, et al. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode[J]. Nanoscale, 2014, 6:1079-1085.
[14] SHAO M F, NING F Y, ZHAO J W, et al. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation[J]. Advanced Functional Materials, 2013, 23:3513-3518.
[15] LU Z Y, CHANG Z, ZHU W, et al. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance[J]. Chemical Communications, 2011, 47:9651-9653.
[16] FENG L, LI G, ZHANG S, et al. Decoration of carbon cloth by manganese oxides for flexible asymmetric supercapacitors[J]. Ceramics International, 2017, 43:8321-8328.
[17] XU J S, SUN Y D, LU M J, et al. Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 334:1466-1476.
[18] XU H H, HU X L, YANG H L, et al. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers:lager areal mass promises higher energy density[J]. Materials Views, 2015, 5:1401882.
[19] WANG T, LE Q J, ZHANG J M, et al. Carbon cloth@T-Nb2O5@MnO2:a rational exploration of manganese oxide for high performance supercapacitor[J]. Electrochimica Acta, 2017, 253:311-318.
[20] LIU X J, LIU J F, SUN X M. NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors[J]. Journal of Materials Chemistry:A, 2015, 3:13900.
[1] 简科, 陈国民, 陈朝辉, 马青松. SiC微粉含量对先驱体转化制备碳纤维布增强碳化硅复合材料性能的影响[J]. 材料工程, 2003, 0(12): 23-25,32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn