Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 43-52    DOI: 10.11868/j.issn.1001-4381.2018.000977
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响
欧阳佩旋1,2, 弭光宝2,3, 李培杰1, 何良菊1, 曹京霞2, 黄旭2
1. 清华大学 新材料国际研发中心, 北京 100084;
2. 中国航发北京航空材料研究院 先进钛合金航空科技重点实验室, 北京 100095;
3. 北京市石墨烯及应用工程技术研究中心, 北京 100095
Effect of NiCrAl/YSZ/NiCrAl-B. e composite coating on combustion products of high-temperature α+β titanium alloys
OUYANG Pei-xuan1,2, MI Guang-bao2,3, LI Pei-jie1, HE Liang-ju1, CAO Jing-xia2, HUANG Xu2
1. National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084, China;
2. Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
3. Beijing Engineering Research Center of Graphene and Application, Beijing 100095, China
全文: PDF(16162 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过摩擦氧浓度方法点燃涂覆NiCrAl/YSZ/NiCrAl-B.e复合涂层的TC11钛合金,采用XRD,SEM,EDS及EPMA等微观表征方法对其燃烧产物进行分析,进而探讨复合涂层对燃烧行为的影响机理。结果表明:燃烧试样的基体从中心孔沿径向往外呈分区组织演变特征,中心孔处的钛合金基体是着火源;当燃烧程度较低时,YSZ中间层对钛合金燃烧行为的影响较小;当剧烈燃烧时,YSZ中间层通过分解反应而在钛合金熔体中大量溶解,为钛合金熔体提供了O和Zr,加速了Ti与O的快速结合,同时ZrTiO4燃烧产物的阻氧能力比TiO2差,从而大大促进了钛合金的扩展燃烧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
欧阳佩旋
弭光宝
李培杰
何良菊
曹京霞
黄旭
关键词 高温钛合金NiCrAl/YSZ/NiCrAl-B.e复合涂层微观组织燃烧行为机理    
Abstract:NiCrAl/YSZ/NiCrAl-B. e composite coating on TC11 titanium alloy was combusted by friction in oxygen-enriched atmosphere. The combustion products were studied by XRD, SEM, EDS and EPMA. The effect of the composite coating on the combustion behavior of TC11 titanium alloy was discussed. The results show that there is regional microstructural evolution along radial direction in the substrate of the combusted specimen. The substrate near the central hole is the ignition source. When the combustion degree is low, the effect of the YSZ intermediate layer on the combustion behavior of titanium alloys can be ignored. However, when the combustion degree is high, the YSZ intermediate layer dissolves greatly in the titanium alloy melt through decomposition reaction, which provides O and Zr for the titanium alloy melt and accelerates the interaction between Ti and O. Furthermore, the ZrTiO4 combustion product has a worse ability to block oxygen diffusion than TiO2. As a result, NiCrAl/YSZ/NiCrAl-B. e composite coating, especially the YSZ layer, promotes the ext-ended combustion of TC11 titanium alloy.
Key wordshigh-temperature titanium alloy    NiCrAl/YSZ/NiCrAl-B. e composite coating    microstruc-ture    combustion behavior    mechanism
收稿日期: 2018-08-16      出版日期: 2019-05-17
中图分类号:  TG146.2  
通讯作者: 弭光宝(1981-),男,博士,高级工程师,主要从事先进高温钛合金及其纳米复合材料、阻燃性能等方面研究,联系地址:北京市81信箱15分箱(100095),E-mail:miguangbao@163.com     E-mail: miguangbao@163.com
引用本文:   
欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
OUYANG Pei-xuan, MI Guang-bao, LI Pei-jie, HE Liang-ju, CAO Jing-xia, HUANG Xu. Effect of NiCrAl/YSZ/NiCrAl-B. e composite coating on combustion products of high-temperature α+β titanium alloys. Journal of Materials Engineering, 2019, 47(5): 43-52.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000977      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/43
[1] 金和喜,魏克湘,李建明,等.航空用钛合金研究进展[J].中国有色金属学报,2015,25(2):280-292. JIN H X,WEI K X,LI J M,et al.Research development of titan-ium alloy in aerospace industry[J].The Chinese Journal of Nonferrous Metals,2015,25(2):280-292.
[2] 黄旭,朱知寿,王红红.先进航空钛合金材料与应用[M].北京:国防工业出版社,2012. HUANG X,ZHU Z S,WANG H H.Advanced aeronautical titanium alloys and applications[M].Beijing:National Defense Industry Press,2012.
[3] 王清江,刘建荣,杨锐.高温钛合金的现状与前景[J].航空材料学报,2014,34(4):1-26. WANG Q J,LIU J R,YANG R.High temperature titanium alloys:status and perspective[J].Journal of Aeronautical Mater-ials,2014,34(4):1-26.
[4] 弭光宝,黄旭,曹京霞,等.航空发动机钛火试验技术研究新进展[J].航空材料学报,2016,36(3):20-26. MI G B,HUANG X,CAO J X,et al.Experimental technique of titanium fire in aero-engine[J].Journal of Aeronautical Materials,2016,36(3):20-26.
[5] 弭光宝,曹春晓,黄旭,等.Ti-V-Cr系阻燃钛合金的非等温氧化行为及阻燃性能预测[J].材料工程,2016,44(1):1-10. MI G B,CAO C X,HUANG X,et al.Non-isothermal oxidation characteristic and fireproof property prediction of Ti-V-Cr type fireproof titanium alloy[J].Journal of Materials Engineering,2016,44(1):1-10.
[6] STROBRIDGE T R,MOULDER J C,CLARK A F.Titanium combustion in turbine engines:FAA-RD-79-51,NBSIR 79-1616[R].[S.l.]:[s.n.],1979.
[7] ANDERSON V G,FUNKHOUSER M,MCDANIEL P.Coating for prevention of titanium combustion:NASA CR-165360,FR-13370[R].[S.l.]:[s.n.],1980.
[8] FRELING M,GUPTA D K.Coating scheme to contain molten material during gas turbine engine fires:US5921751A[P].1999-07-13.
[9] KOSING O E,SCHARL R,SCHMUHL H J.Design improv-ements of the EJ200 HP compressor:from design verification en-gine to a future all blisk version[C]//ASME Turbp Expo 2001:Power for Land, Sea, and Air.Louisiana, USA:American Soci-ety of Mechanical Engineers,2001.
[10] ROTH-FAGARASEANU D,WIRTH M.Method for the prov-ision of fire protection for titanium components of an aircraft gas turbine and titanium components for an aircraft gas turbine:US2009/0293447A1[P].2009-12-03.
[11] LI B,DING R D,SHEN Y F,et al.Preparation of Ti-Cr and Ti-Cu flame-retardant coatings on Ti-6Al-4V using a high-energy mechanical alloying method:a preliminary research[J].Mater-ials &Design,2012,35:25-36.
[12] GRUNKE R,PEICHL L,PUCHINGER F,et al.Structural component made of a titanium alloy and covered by a protective coating and method for producing the coating:US5102697[P].1992-04-07.
[13] 王璐,张佳平,郑渠英,等.一种具有防钛火功能的可磨耗封严涂层的制备方法:CN102560322A[P].2012-07-11. WANG L,ZHANG J P,ZHENG Q Y,et al.A method for prep-aration of abradable seal coating of fire resistance:CN10-2560322A[P].2012-07-11.
[14] ANON.Ni-Ti binary phase diagram 0-100 at.% Ti[DB/OL].[2018-12-01].https://materials.springer.com/isp/phase-diag-ram/docs/c_0906861.
[15] LIN K F,LIN C C.Interfacial reactions between Ti-6Al-4V alloy and zirconia mold during casting[J].Journal of Materials Sci-ence,1999,34(23):5899-5906.
[16] ARRÓYAVE R.Thermodynamics and kinetics of ceramic/metal interfacial interactions[D].Boston,US:Massachusetts Institute of Technology,2004.
[17] WANG Y H,KOU H,CHANG H,et al.Phase transformation in TC21 alloy during continuous heating[J].Journal of Alloys and Compounds,2009,472(1/2):252-256.
[18] FABRICHNAYA O.O-Ti-Zr ternary phase diagram evaluation:phase diagrams, crystallographic and thermodynamic data[DB/OL].[2018-12-01].https://materials.springer.com/msi/docs/sm_msi_r_10_013037_01.
[19] FERRER L,MONS C M.Compressor housing resistant to titanium fire, high pressure compressor including such a housing and aircraft engine fitted with such a compressor:US8662838B2[P].2004-03-04.
[20] 弭光宝,曹春晓,黄旭,等.航空发动机用TC11钛合金抗点燃性能及机理研究[J].航空材料学报,2014,34(4):83-91. MI G B,CAO C X,HUANG X,et al.Ignition resistance perfo-rmance and its mechanism of TC11 titanium alloy for aero-engine[J].Journal of Aeronautical Materials,2014,34(4):83-91.
[21] 斯温M V.陶瓷的结构与性能[M].北京:科学出版社,1998. SWAIN M V.Structure and properties of ceramics[M].Beijing:Science Press,1988.
[22] OUYANG P X,MI G B,CAO J X,et al.Microstructure char-acteristics after combustion and fireproof mechanism of TiAl-based alloys[J].Materials Today Communications,2018,16:364-373.
[23] YOSHIHARA M.Influence of Zr addition on oxidation behavior of TiAl-based alloys[J].Materials Science Forum,2011,696:360-365.
[24] SOLMON H,CHAUMONT J,DOLLIN C,et al.Zr, Y and O self diffusion in Zr1-xYxO2-x/2(x=0.17)[J].Ceramic Transact-ions,1991,24:175-184.
[25] BROSSMANN U,WVRSCHUM R,SÖDERVALL U,et al.Oxygen diffusion in ultrafine grained monoclinic ZrO2[J].Journal of Applied Physics,1999,85(11):7646-7654.
[26] MADEYSKI A,SMELTZER W W.Oxygen diffusion in monoc-linic zirconia[J].Materials Research Bulletin,1968,3(4):369-375.
[27] KENESHEA F J,DOUGLASS D L.The diffusion of oxygen in zirconia as a function of oxygen pressure[J].Oxidation of Met-als,1971,3(1):1-14.
[28] WOHLBIER F H,MURCH G E,FISHER D J.Diffusion and defect data[M].Aedemannsdorf,Switzerland:Trans Tech Pub-licaitons,1978.
[29] LAGERLOF K P D,PLETKA B J,MITCHELL T E,et al.Deformation and diffusion in sapphire (α-Al2O3)[J].Radiation Effects,1983,74(1/4):87-107.
[30] PROT D,MONTY C.Self-diffusion in α-Al2O3:Ⅱ oxygen diffusion in ‘undoped’ single crystals[J].Philosophical Magazine A,1996,73(4):899-917.
[1] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 周怡然, 刘虎, 杨金华, 姜卓钰, 吕晓旭, 焦健. 熔融渗透工艺制备SiC-TiSi2复相陶瓷的反应机理[J]. 材料工程, 2019, 47(6): 88-93.
[4] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[5] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[6] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[7] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[8] 袁姣娜, 王建利, 杨忠, 郭永春, 李建平. 合金成分对Mg-Zn-Y合金准晶形貌和体积分数的影响[J]. 材料工程, 2019, 47(3): 116-122.
[9] 张欣悦, 张德坤, 陈凯, 徐寒冬. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129-137.
[10] 高海涛, 王建江, 李泽. 基于超材料设计的钡铁氧体吸波涂层研究[J]. 材料工程, 2019, 47(1): 70-76.
[11] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[12] 樊琳, 许珂敬, 史晓慧, 贾雨辉, 张衡, 魏春城. 不同氟源对FTO薄膜性能影响及其作用机理[J]. 材料工程, 2018, 46(9): 59-64.
[13] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[14] 史倩茹, 张敏, 吴伟刚. 钛-钢爆炸复合板熔焊对接过渡层焊接材料[J]. 材料工程, 2018, 46(9): 138-143.
[15] 钟祥华, 刘羽, 刘文元, 许涛. 地开石-醋酸铯插层复合物的制备及机理[J]. 材料工程, 2018, 46(7): 76-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn