Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (2): 1-10    DOI: 10.11868/j.issn.1001-4381.2018.000979
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战
刘巧沐, 黄顺洲, 何爱杰
中国航发四川燃气涡轮研究院, 成都 610500
Application requirements and challenges of CMC-SiC composites on aero-engine
LIU Qiao-mu, HUANG Shun-zhou, HE Ai-jie
AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China
全文: PDF(4836 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 随着航空发动机推重比的不断提高,急需发展轻质、高强韧、耐高温、长寿命、抗烧蚀、抗氧化的碳化硅陶瓷基复合材料(SiC matrix ceramic composites,CMC-SiC),以满足航空发动机愈加苛刻的服役要求。本文简要介绍了CMC-SiC复合材料的特点和制备方法,综述了CMC-SiC复合材料在国外先进航空发动机热端部件上的应用进展及国内的研究现状。从工程化角度,指出了国内在高性能纤维、构件设计及制备、环境障涂层、无损检测技术、考核验证方法、修复技术等方面存在的差距及需突破的关键技术,指出了今后国内的研究目标与发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘巧沐
黄顺洲
何爱杰
关键词 航空发动机CMC-SiC复合材料热端部件应用    
Abstract:With the increase of the thrust-weight ratio of the aero-engine, CMC-SiC composites with low density, high strength and toughness, high thermal stability, long lifetime, good ablation resistance and oxidation resistance need to be developed to meet the requirements of the complicated and aggressive environments in the aero-engine. The characteristics, fabrication methods, applications on the hot components of the abroad advanced aero-engines, the domestic research achievements and the open problems of the CMC-SiC composites were introduced. The research tendencies in the high performance fibers,parts design and fabrication, environmental barrier coatings,non-destructive testing technologies, evaluation and verification method and repairing technologies were put forward.
Key wordsaero-engine    CMC-SiC composite    hot component    application
收稿日期: 2018-08-16      出版日期: 2019-02-21
中图分类号:  TB332  
通讯作者: 刘巧沐(1984-),男,高级工程师,博士,现从事航空发动机材料工艺与应用研究工作,联系地址:四川省成都市中国航发四川燃气涡轮研究院(610500),E-mail:lqiaomu@163.com     E-mail: lqiaomu@163.com
引用本文:   
刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.
LIU Qiao-mu, HUANG Shun-zhou, HE Ai-jie. Application requirements and challenges of CMC-SiC composites on aero-engine. Journal of Materials Engineering, 2019, 47(2): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000979      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/1
[1] 刘大响. 高性能航空发动机的发展对材料技术的要求[J]. 燃气涡轮试验与研究,1998,11(3):1-5. LIU D X. The requirement for materials technology to develop high performance aero engine[J]. Gas Turbine Experiment and Research, 1998, 11(3):1-5.
[2] 江义军. 推重比12~15发动机技术途径分析[J]. 航空动力学报,2001,16(2):103-107. JIANG Y J. Technical approaches to thrust-weight ratio 12~15 of aeroengine[J]. Journal of Aerospace Power, 2001, 16(2):103-107.
[3] GASS D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton:The American Institute of Aeronautics and Astronautics (AIAA), 2008:1-36.
[4] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程,2017,45(10):1-5. LIU D X. One generation of new material, one generation of new type engine:development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45(10):1-5.
[5] COFER C G, ECONOMY J. Oxidative and hydrolytic stability of boron nitride-a new approach to improving the oxidation resistance of carbonaceous structures[J]. Carbon, 1995, 33(4):389-395.
[6] 张立同. 纤维增韧碳化硅陶瓷复合材料-模拟、表征与设计[M]. 北京:化学工业出版社,2009. ZHANG L T. Fiber-reinforced silicon carbide ceramic composites-modeling, characterization and design[M]. Beijing:Publication of Chemistry Industry, 2009.
[7] 张立同,成来飞. 自愈合陶瓷基复合材料制备和应用基础[M]. 北京:化学工业出版社,2015. ZHANG L T, CHENG L F. Preparation and application of self-healing ceramic matrix composites[M]. Beijing:Publication of Chemistry Industry, 2015.
[8] 刘巧沐,黄顺洲,刘佳,等. 高温材料研究进展及其在航空发动机上应用[J]. 燃气涡轮试验与研究,2014,27(4):51-56. LIU Q M, HUANG S Z, LIU J, et al. Progress and application of high temperature structural materials on aeroengine[J]. Gas Turbine Experiment and Research, 2014, 27(4):51-56.
[9] FRANCOIS C. Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites[J]. Advanced Engineering Materials, 2002, 4(12):903-912.
[10] BEESLEY C P. The application of CMCs in high integrity gas turbine engines[J]. Key Engineering Materials, 1996,329(258):165-176.
[11] BERDOYES I, THEBAULT J, BOUILLON E. Improved SiC/SiC and C/C materials applications parts[C]//European Congress Advanced Materials Processes. Prague, Czech:Springer, 2005:1-7.
[12] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15:804-809.
[13] KATOH Y, SNEAD L L, Jr HENAGER C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials, 2014, 455:387-397.
[14] 张立同,成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报,2007,24(2):1-6. ZHANG L T, CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1-6.
[15] 江东亮. 结构功能一体化的高性能陶瓷材料的研究与开发[J]. 中国工程科学,2003,5(2):35-39. JIANG D L. Research and development of high performance ceramics with structural and functional properties combined[J]. Engineering Sciences, 2003, 5(2):35-39.
[16] 李世波,徐永东,张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报,2001,15(1):45-49. LI S B, XU Y D, ZHANG L T. Study on silicon carbide fibers reinforced ceramic-matrix composites[J]. Materials Review, 2001, 15(1):45-49.
[17] 张立同. 国外航空用陶瓷发展趋势[J]. 航空科技技术,1994(6):25-28. ZHANG L T. Development trend of foreign aviation ceramics[J]. Aeronautical Science & Technology, 1994(6):25-28.
[18] 张立同,成来飞,徐永东,等. 自愈合碳化硅陶瓷基复合材料研究及应用进展[J]. 航空材料学报,2006,26(3):226-232. ZHANG L T, CHENG L F, XU Y D, et al. Progress on self-healing silicon carbide ceramic matrix composites and its applications[J]. Journal of Aeronautical Materials, 2006, 26(3):226-232.
[19] 肖鹏,徐永东,张立同. 高温陶瓷基复合材料制备工艺的研究[J]. 材料工程,2000(2):41-44. XIAO P, XU Y D, ZHANG L T. Study of processing of high temperature ceramic matrix composites[J]. Journal of Materials Engineering, 2000(2):41-44.
[20] 张立同,成来飞,徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术,2003(1):24-32. ZHANG L T, CHENG L F, XU Y D. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology, 2003(1):24-32.
[21] 卢国锋,乔生儒,徐艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程,2014(11):107-112. LU G F, QIAO S R, XU Y. Progress in research on interface layer of continuous fiber reinforced ceramic matrix composites[J]. Journal of Materials Engineering, 2014(11):107-112.
[22] 邹世钦,张长瑞,周新贵,等. 连续纤维增强SiCf/SiC陶瓷复合材料的发展[J]. 材料导报,2003,17(8):61-64. ZOU S Q, ZHANG C R, ZHOU X G, et al. Progress in continuous fiber reinforced ceramic matrix composites[J]. Materials Review, 2003, 17(8):61-64.
[23] CHOURY J J. Thermostructural composite materials in aeronautics and space applications[C]//GIFAS Aeronautical and Space Conference. Delhi, India:GIFAS, 1989:1-18.
[24] PREWOK M, BRENNAN J J, LAYDEN G K. Fiber reinforced glasses and glass-ceramics for high performance applications[J]. American Ceramic Society Bulletin, 1986, 65(2):305-313.
[25] ZAWADA L, RICHARDSON G, SPRIET P. Ceramic matrix composites for aerospace turbine engine exhaust nozzles[C]//5th International Conference on High-Temperature Ceramic Matrix Composites. Seattle, Washington, America:American Ceramic Society Bulletin, 2004:491-498.
[26] GRENET C, PLINKETI L, VEYRET J B, et al. Carbon fiber-reinforced silicon nitride composites by slurry infiltration[J]. Ceramic Transactions, 1995, 58:125-130.
[27] KIM D P, COFER C G, ECONOMY J. Fabrication and properties of ceramic composites with a boron nitride matrix[J]. Journal of the American Ceramic Society, 1995, 78(6):1546-1552.
[28] KIMME J, MIRIYALA N, PRIEE J, et al. Evaluation of CFCC liners with EBC after field testing in a gas turbine[J]. Journal of the European Ceramic Society, 2002, 22(14/15):2769-2775.
[29] SINGH M. Advanced ceramic matrix composites (CMCs) for high temperature applications[C]//Plenary Lecture at the International Symposium on High Temperature Ceramic. Selb:Germany Ceramic Society,2005:1-43.
[30] 刘巧沐,许建锋,刘佳. 碳化硅陶瓷基复合材料基体和涂层改性研究进展[J]. 硅酸盐学报,2018,46(12):1700-1706. LIU Q M, XU J F, LIU J. Development on anti-oxidation modification of CMC-SiC composites matrix and coating[J]. Journal of the Chinese Ceramic Society, 2018, 46(12):1700-1706.
[31] 刘巧沐,黄顺洲,何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程,2018,46(10):1-8. LIU Q M, HUANG S Z, HE A J. Progress in environmental barrier coatings for SiC matrix ceramic composites[J]. Journal of Materials Engineering, 2018, 46(10):1-8.
[32] LIU J, ZHANG L T, LIU Q M, et al. Polymer-derived SiOC-BSAS coatings as an environmental barrier for C/SiC composites[J]. Journal of the American Ceramic Society, 2010, 93(12):4148-4152.
[33] LIU J, ZHANG L T, LIU Q M, et al. Structure design and fabrication of environmental barrier coatings for crack resistance[J]. Journal of the European Ceramic Society, 2014, 34(8):2005-2012.
[34] LIU J, ZHANG L T, LIU Q M, et al. Calcium-magnesium-aluminosilicate corrosion behaviors of rare-earth disilicates at 1400℃[J]. Journal of the European Ceramic Society, 2013, 33(15/16):3419-3428.
[35] ZHANG L T, CHENG L F, LUAN X G, et al. Environmental performance testing system for thermostructure materials applied in aeroengines[J]. Key Engineering Materials, 2006, 313:183-190.
[36] 张勇,何新波,曲选辉,等. 超高温材料的研究进展及应用[J]. 材料导报,2007, 21(12):60-64. ZHANG Y, HE X B, QU X H, et al. Research progress and application of ultra high-temperature materials[J]. Materials Review, 2007, 21(12):60-64.
[37] UPADHYA K, YANG J M, HOFFMAN W P. Materials for ultrahigh temperature structural applications[J]. American Ceramic Society Bulletin, 1997, 76(12):51-56.
[38] 段刘阳,罗磊,王一光. 超高温陶瓷基复合材料的改性和烧蚀行为[J]. 中国材料进展, 2015,34(10):762-769. DUAN L Y, LUO L, WANG Y G. Modification and ablation behaviors of ultrahigh temperature ceramic matrix composites[J]. Materials China, 2015, 34(10):762-769.
[39] DUAN L, ZHAO X, WANG Y, et al. Comparative ablation behaviors of C/SiC-HfC composites prepared by reactive melt infiltration and precursor infiltration and pyrolysis routes[J]. Ceramic International, 2017, 43(18):16114-16120.
[40] SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3/9):409-420.
[41] LI Q, DONG S, WANG Z, et al. Fabrication and properties of 3-D Cf/ZrB2-ZrC-SiC composites via polymer infiltration and pyrolysis[J]. Ceramic International, 2013, 39(5):5937-5941.
[42] COURTRIGHT E L, PRATER J T, HOLCOMB G R, et al. Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium[J]. Oxidation of Metals, 1991, 36(5):423-437.
[43] PAVESE M, FINO P, BADINI C, et al. HfB2/SiC as a protective coating for 2D Cf/SiC composites:effect of high temperature oxidation on mechanical properties[J]. Surface and Coatings Technology, 2008, 202(10):2059-2067.
[44] DASMAHAPATRA A, MELETIS E, KROLL P. First principles modeling and simulation of Zr-Si-B-C-N ceramics:developing hard and oxidation resistant coatings[J]. Acta Materialia, 2017, 125:246-254.
[45] LIU Q M, ZHANG L T, LIU J, et al. Laser ablation behaviors of SiC-ZrC coated carbon/carbon composites[J]. Surface and Coatings Technology, 2011, 205(17/18):4299-4303.
[46] LIU Q M, ZHANG L T, MENG Z X, et al. Chemical vapor deposition (CVD) of ZrC coatings from ZrCl4-C3H6-H2[J]. Advanced Materials Research, 2011,1165(382):648-652.
[47] LIU Q M, ZHANG L T, LIU J, et al. The oxidation behavior of SiC-ZrC-SiC coated C/SiC minicomposites at ultrahigh temperatures[J]. Journal of the American Ceramic Society, 2010, 93(12):3990-3992.
[48] LIU Q M, ZHANG L T, CHENG L F, et al. Chemical vapour deposition of zirconium carbide and silicon carbide hybrid whiskers[J]. Materials Letters, 2010, 64(4):552-554.
[49] LIU Q M, ZHANG L T, WANG Y G, et al. Thermodynamic calculations of ZrC-SiC system for chemical vapor deposition applications from SiCl4-ZrCl4-CH4-H2[J]. Ceramic Transactions, 2010, 215:65-75.
[50] LIU Q M, ZHANG L T, LIU J, et al. Thermodynamic study on codeposition of ZrC-SiC from MTS-ZrCl4-CH4-H2[J]. Inorganic Materials, 2010, 46(10):1090-1095.
[51] 刘巧沐,张立同,成来飞,等. C/SiC-ZrC复合材料在甲烷燃气环境中的氧化行为[J].复合材料学报,2011,28(4):107-111. LIU Q M, ZHANG L T, CHENG L F, et al. Oxidation behaviors of C/SiC-ZrC composites in a CH4 combustion gas environment[J]. Acta Materiae Compositae Sinica, 2011, 28(4):107-111.
[1] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[2] 许婧, 邢悦, 郝思嘉, 任志东, 杨程. 石墨烯/聚合物基复合材料3D打印成型研究进展[J]. 材料工程, 2018, 46(7): 1-11.
[3] 汤超, 陈花玲, 李博, 刘学婧. 软材料表面形貌调控与应用研究进展[J]. 材料工程, 2018, 46(3): 131-141.
[4] 王剑桥, 雷卫宁, 薛子明, 钱海峰, 刘维桥. 石墨烯增强金属基复合材料的制备及应用研究进展[J]. 材料工程, 2018, 46(12): 18-27.
[5] 杨丰, 王飞, 贾若飞, 杨丽丽, 杨慧, 李岚. 零维、一维和二维ZnO纳米材料的应用研究进展[J]. 材料工程, 2018, 46(10): 20-29.
[6] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[7] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程, 2018, 46(10): 1-8.
[8] 梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
[9] 叶伟杰, 陈楷航, 蔡少龄, 陈利科, 钟同苏, 王小英. 纳米银的合成及其抗菌应用研究进展[J]. 材料工程, 2017, 45(9): 22-30.
[10] 陈永星, 朱胜, 王晓明, 杜文博, 张垚. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11): 129-138.
[11] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5.
[12] 王云飞, 张朋, 刘刚, 肇研, 包建文. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44(9): 121-128.
[13] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
[14] 李佩桓, 张勇, 王涛, 张亚洲, 李钊, 贾崇林, 曲选辉. 连续SiC纤维增强金属基复合材料研究进展[J]. 材料工程, 2016, 44(8): 121-129.
[15] 于美, 李新杰, 马玉骁, 刘瑞丽, 刘建华, 李松梅. 石墨烯基复合超级电容器材料研究进展[J]. 材料工程, 2016, 44(5): 101-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn