Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 123-127    DOI: 10.11868/j.issn.1001-4381.2018.001028
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ba2+在KDP(100)表面吸附的密度泛函理论研究
刘峣1, 武玉琳1, 屈云鹏1, 郭文英2, 梁丽萍2
1. 山东大学 材料液固结构演变与加工教育部重点实验室, 济南 250061;
2. 临沂市科学技术合作与应用研究院, 山东 临沂 276000
Density functional theory study of Ba2+ adsorption on KDP (100) surface
LIU Yao1, WU Yu-lin1, QU Yun-peng1, GUO Wen-ying2, LIANG Li-ping2
1. Key Laboratory for Liquid-solid Structural Evolution&Processing of Materials(Ministry of Education), Shandong University, Jinan 250061, China;
2. Linyi Institute of Science and Technology Cooperation and Application, Linyi 276000, Shandong, China
全文: PDF(1590 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为了研究Ba2+与KDP晶体表面相互作用的本质,采用密度泛函理论(DFT)方法对Ba2+在KDP(100)表面的吸附行为进行计算。结果表明:Ba2+在KDP(100)表面的吸附能为负值,吸附过程为自发的放热反应。通过结构优化得到3种稳定的吸附构型,最终吸附位置为O原子的顶位或两个O原子之间的桥位。当Ba2+位于磷酸根基团中的两个O原子之间的桥位时,吸附最稳定。在3种吸附构型中,Ba2+与表面O原子均通过离子键结合,而与表面最外层H原子则会产生一定的共价相互作用。另外,Ba2+吸附使KDP(100)表面的P-O键、H-O键以及K-O键有不同程度的伸长或缩短,同时表面的氢键结构也发生了明显的变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘峣
武玉琳
屈云鹏
郭文英
梁丽萍
关键词 密度泛函理论吸附KDP晶体Ba2+    
Abstract:In order to study the nature of interaction between Ba2+ and the KDP crystal surface, the adsorption behavior of Ba2+ on the KDP (100) surface was calculated by using density functional theory (DFT). The results show that the adsorption energies of Ba2+ on the KDP (100) surface are negative, indicating the adsorption processes are spontaneous and exothermic. Three types of adsorption configurations are formed after structure optimizations, and final adsorption positions are top sites on O atoms or bridge sites between two O atoms. The most stable adsorption system can be observed when Ba2+ on the bridge site between two O atoms within a phosphate group. In the three different adsorption configurations, Ba2+ can form ionic bonds with the surface O atoms, while interactions between Ba2+ and the surface H atoms exhibit covalent character. The P-O, H-O, and K-O bonds on the KDP (100) surface are elongated or shortened after Ba2+ adsorption, and the structure of hydrogen bonds on the surface also have been changed significantly.
Key wordsDFT    adsorption    KDP crystal    Ba2+
收稿日期: 2018-08-29      出版日期: 2019-11-21
中图分类号:  TB34  
基金资助: 
通讯作者: 刘峣(1983-),男,副教授,博士,主要研究方向为多功能复合材料,联系地址:山东省济南市经十路17923号山东大学千佛山校区材料科学与工程学院(250061),E-mail:liuyao@sdu.edu.cn     E-mail: liuyao@sdu.edu.cn
引用本文:   
刘峣, 武玉琳, 屈云鹏, 郭文英, 梁丽萍. Ba2+在KDP(100)表面吸附的密度泛函理论研究[J]. 材料工程, 2019, 47(11): 123-127.
LIU Yao, WU Yu-lin, QU Yun-peng, GUO Wen-ying, LIANG Li-ping. Density functional theory study of Ba2+ adsorption on KDP (100) surface. Journal of Materials Engineering, 2019, 47(11): 123-127.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001028      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/123
[1] ZAITSEVA N, CARMAN L. Rapid growth of KDP-type crystals[J]. Progress in Crystal Growth & Characterization of Materials, 2001, 43(1):1-118.
[2] ZAITSEVA N P, RASHKOVICH L N, BOGATYREVA S V. Stability of KH2PO4, and K(H,D)2PO4, solutions at fast crystal growth rates[J]. Journal of Crystal Growth, 1995, 148(3):276-282.
[3] CRAXTON R S, JACOBS S D, RIZZO J, et al. Basic properties of KDP related to the frequency conversion of 1μm laser radiation[J]. Journal of Quantum Electronics IEEE, 1981, 17(9):1782-1786.
[4] 张磊. 水分子在KDP晶体(100)和(101)面上吸附行为的密度泛函理论研究[D]. 济南:山东大学, 2017. ZHANG L. DFT study of water molecule adsorption on the KH2PO4 (100) and (101) surfaces[D]. Jinan:Shandong University, 2017.
[5] 朱胜军,王圣来,丁建旭,等. 过饱和度对KDP晶体生长与光学性能的影响研究[J]. 人工晶体学报, 2013, 42(10):1973-1977. ZHU S J, WANG S L, DING J X, et al. Effect of supersaturation on growth and optical properties of KDP crystal[J]. Journal of Synthetic Crystals, 2013, 42(10):1973-1977.
[6] ZAITSEVA N, CARMAN L, SMOLSKY I, et al. The effect of impurities and supersaturation on the rapid growth of KDP crystals[J]. Journal of Crystal Growth, 1999, 204(4):512-524.
[7] BELOUET C, DUNIA E, PÉTROFF J F. X-ray topographic study of defects in KH2PO4, single crystals and their relation with impurity segregation[J]. Journal of Crystal Growth, 1974, 23(4):243-252.
[8] OWCZAREK I, SANGWAL K. Effect of impurities on the growth of KDP crystals:mechanism of adsorption on (101) faces[J]. Journal of Crystal Growth, 1990, 102(3):574-580.
[9] FU Y J, GAO Z S, LIU J M, et al. The effects of anionic impurities on the growth habit and optical properties of KDP[J]. Journal of Crystal Growth, 1999, 198(3):682-686.
[10] YOKOTANI A, NISHIDA Y, FUJIOKA K, et al. A chromogenic limulus test for detection of microbes that decreases the laser damage threshold of potassium dihydrogen phosphate crystals[J]. Journal of Applied Physics, 1987, 61(9):4696-4698.
[11] 丁建旭,刘冰,王圣来,等. Cr3+掺杂对快速生长KDP晶体的生长习性和光学性能的影响[J]. 无机材料学报, 2011, 26(4):354-358. DING J X, LIU B, WANG S L, et al. Effect of Cr3+ dopant on growth habit and optical properties of rapid grown KDP crystal[J]. Journal of Inorganic Materials, 2011, 26(4):354-358.
[12] RASHKOVICH L N, KRONSKY N V. Influence of Fe3+, and Al3+, ions on the kinetics of steps on the {100} faces of KDP[J]. Journal of Crystal Growth, 1997, 182(3/4):434-441.
[13] EREMINA T A, KUZNETSOV V A, EREMIN N N, et al. On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals-Ⅱ:experimental study of influence of bivalent and trivalent impurity ions on growth kinetics and surface morphology of KDP crystals[J]. Journal of Crystal Growth, 2005, 273(3/4):586-593.
[14] HOPPER R W, UHLMANN D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10):4023-4037.
[15] EFREMOVA E P, SUKHANOVSKAYA A I, KUZNETSOV V A. Effective distribution coefficients of cation impurities in KDP crystals[J]. Inorganic Materials, 2004, 40(6):636-640.
[16] ZHENG G, SU G, ZHUANG X, et al. Growth and properties of Ba-doped KDP crystals[J]. Crystal Research & Technology, 2010, 43(8):811-816.
[17] MOROSIN B, SAMARA G A. Pressure effects on the lattice parameters and structure of KH2PO4-type crystals[J]. Ferroelectrics, 1972, 3(1):49-56.
[18] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. Journal of Chemical Physics, 1990, 92(1):508-517.
[19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[20] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review:B, 1990, 41(11):7892.
[21] WU Y L, ZHANG L, LIU Y, et al. Adsorption mechanisms of metal ions on the potassium dihydrogen phosphate (100) surface:a density functional theory-based investigation[J]. Journal of Colloid & Interface Science, 2018, 522:256-263.
[22] MULLIKEN R S. Electronic Population analysis on LCAO-MO molecular wave functions[J]. Journal of Chemical Physics, 1955, 23(10):1841-1846.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[3] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[4] 赵晓燕, 黄晨, 张帅, 汪称意. 壳聚糖/聚乙烯醇过滤膜的制备及其性能表征[J]. 材料工程, 2020, 48(7): 176-183.
[5] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[6] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
[7] 赵璐婷, 张健, 李娜, 牛梅红, 平清伟. 半纤维素基磁性水凝胶的制备及其对染料吸附性能的研究[J]. 材料工程, 2020, 48(11): 85-91.
[8] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[9] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[10] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[11] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
[12] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[13] 刘红娟, 吴仁杰, 谢水波, 刘迎九. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32.
[14] 葛梦妮, 张建峰, 曹惠杨, 王红兵. 剥离时间对二维Ti3C2吸附染料污染物性能的影响[J]. 材料工程, 2018, 46(7): 144-150.
[15] 刘红娟, 谢水波, 张希晨, 刘迎九, 曾涛涛. 氧化石墨烯复合材料吸附铀的研究进展[J]. 材料工程, 2018, 46(5): 11-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn