Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 133-139    DOI: 10.11868/j.issn.1001-4381.2018.001039
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响
李昊卿1, 田玉晶1, 赵而团1, 郭红2, 方晓英1
1. 山东理工大学 机械工程学院, 山东 淄博 255000;
2. 山东理工大学 分析测试中心, 山东 淄博 255000
Effect of phase boundary and grain boundary characteristics on mechanical properties and corrosion resistance of S32750 duplex stainless steel
LI Hao-qing1, TIAN Yu-jing1, ZHAO Er-tuan1, GUO Hong2, FANG Xiao-ying1
1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China;
2. Center of Testing and Analysis, Shandong University of Technology, Zibo 255000, Shandong, China
全文: PDF(5238 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过固溶处理获得不同初始组织状态的S32750双相不锈钢样品,然后进行厚度压下量80%的冷轧变形和1050℃的退火处理,采用SEM-EBSD和XRD技术研究合金相界与晶界特征以及相组成分布情况,并利用拉伸实验、纳米压痕和双环电化学动电位再活化法(DL-EPR)分析不同初始状态样品的组织对力学性能与耐晶间腐蚀性能的影响规律。结果表明:高温固溶处理的合金样品经冷轧退火后晶粒细小均匀,两相分布接近1∶1,且相界占内界面(晶界+相界)比例较高,同相晶粒团簇程度最低,表现出优异的综合力学性能。合金样品经敏化处理后,σ相易沿α相晶界析出,高温固溶并经轧制退火后的样品中,由于α晶界比例较少且满足K-S取向关系的相界比例较高则又表现出良好的晶间腐蚀抗力。因此,通过适当的工艺来调控合金的相界与晶界分布可以实现材料强度和晶间腐蚀抗力的同步改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李昊卿
田玉晶
赵而团
郭红
方晓英
关键词 金属材料相界与晶界特征EBSD双相不锈钢力学性能晶间腐蚀抗力    
Abstract:S32750 duplex stainless steel samples with different initial microstructures obtained by solid solution heat treatment (SHT) were cold rolled with the thickness reduction of 80% and subsequently annealed at 1050℃. The distribution of phase boundary and grain boundary character for the as-processed samples was investigated by SEM-EBSD and XRD techniques. Furthermore, the effect of microstructure on mechanical properties and intergranular corrosion resistance was analyzed by means of tensile testing, nano-indentation and double loop electrochemical potential reactivation (DL-EPR) method. The results show that the fine-grained microstructure with the areal ratio of α to γ about 1, the highest fraction of phase boundaries out of the total interfaces (grain boundaries +phase boundaries), and the least grain clustering within the respective α and γ phases was obtained in the sample previously treated by high temperature SHT and subsequent cold rolling and annealing. As a result, the sample exhibits excellent mechanical properties. After the cold-rolled and annealed samples are sensitized at 750℃ for 4 h, the σ phase precipitates readily along the α grain boundary. The sample previously treated by high temperature SHT and subsequent cold rolling and annealing also possess better intergranular corrosion resistance due to the relatively small amount of α grain boundary and high population of phase boundaries meeting K-S orientation relationship between α and γ. Therefore, the strength and intergranular corrosion resistance might be improved simultaneously by controlling and designing interface character distribution via appropriate thermal mechanical treatment in duplex stainless steel.
Key wordsmetallic material    phase boundary and grain boundary characteristics    EBSD    duplex sta-inless steel    mechanical property    intergranular corrosion resistance
收稿日期: 2018-08-29      出版日期: 2020-03-03
中图分类号:  TG142  
通讯作者: 方晓英(1971-),女,教授,博士,主要从事金属材料界面工程研究,联系地址:山东省淄博市张店区新村西路266号山东理工大学机械工程学院(255000),E-mail:fxy@sdut.edu.cn     E-mail: fxy@sdut.edu.cn
引用本文:   
李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
LI Hao-qing, TIAN Yu-jing, ZHAO Er-tuan, GUO Hong, FANG Xiao-ying. Effect of phase boundary and grain boundary characteristics on mechanical properties and corrosion resistance of S32750 duplex stainless steel. Journal of Materials Engineering, 2020, 48(2): 133-139.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001039      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/133
[1] 康利梅. 双相不锈钢的发展及应用综述[J]. 科技广场, 2010(8):165-168. KANG L M. Review of development and application of duplex stainless steel[J]. Science Mosaic, 2010(8): 165-168.
[2] 陆世英,张延凯,康喜范.不锈钢[M]. 北京:原子能出版社,1995:16-18. LU S Y, ZHANG Y K, KANG X F. Stainless steel[M]. Beijing: Atomic Energy Press, 1995:16-18.
[3] NILSSON J O,郑德清. 超级双相不锈钢[J]. 大连特殊钢, 1993(5):1-18. NILSSON J O,ZHENG D Q. Super duplex stainless steel[J]. Dalian Special Steel, 1993(5):1-18.
[4] 杜海涛. 超级双相不锈钢在典型服役环境中的腐蚀行为研究[D]. 沈阳:东北大学, 2014. DU H T. Corrosion behavior of super duplex stainless steel in typical service environment[D]. Shenyang: Northeastern University, 2014.
[5] 李国平,王建军,吴天海,等. 2205双相不锈钢TIG焊接头组织及力学性能[J]. 材料研究学报, 2016, 30(12): 897-902. LI G P, WANG J J, WU T H, et al. Microstructure and mechanical properties of 2205 DSS metal inert-gas welding joints[J]. Chinese Journal of Materials Research, 2016, 30(12): 897-902.
[6] 韩冬,蒋益明,邓博,等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响[J]. 金属学报, 2009, 45(8): 919-923. HAN D, JIANG Y M, DENG B, et al. Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel[J]. Acta Metallurgica Sinica, 2009, 45(8): 919-923.
[7] 李松梅,吴凌飞,刘建华,等. 应力比和腐蚀环境对超高强度钢AerMet100疲劳裂纹扩展的影响[J]. 航空材料学报, 2014, 34(3): 74-80. LI S M, WU L F, LIU J H, et al. Effect of load ratio and corrosion on fatigue behavior of AerMet100 ultrahigh strength steel[J]. Journal of Aeronautical Materials, 2014, 34(3): 74-80.
[8] 曹静,安立聪,齐兴,等. 含Ti铸造双相不锈钢点蚀行为研究[J]. 材料研究学报, 2017, 31(7): 553-560. CAO J, AN L C, QI X, et al. Pitting corrosion behavior of cast Ti-bearing duplex stainless steel[J]. Chinese Journal of Materials Research, 2017, 31(7): 553-560.
[9] FANG X Y, LIU Z Y, TIKHONOVA M, et al. Evolution of texture and development of ∑3<em>n grain clusters in 316 austenitic stainless steel during thermal mechanical processing[J]. Journal of Materials Science, 2013, 48(3): 997-1004.
[10] 方晓英,刘志勇, TIKHONOVA M, 等. 多向锻造和单向轧制304不锈钢高温退火后的晶界特征分布[J]. 金属学报, 2012, 48(8): 895-906. FANG X Y, LIU Z Y, TIKHONOVA M, et al. Grain boundary plane distribution in 304 steel annealed at high temperature after a parallel processing of multiple forging and direct rolling[J]. Acta Metallurgica Sinica, 2012, 48(8): 895-906.
[11] 刘锡荣,张凯,夏爽,等. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410. LIU X R, ZHANG K, XIA S, et al. Effects of triple junction and grain boundary characters on the morphology of carbide precipitation in alloy 690[J]. Acta Metallurgica Sinica, 2018, 54(3): 404-410.
[12] 许婷,方晓英,朱言利,等. 双相不锈钢中奥氏体沉淀相的晶粒取向及界面特征分布[J]. 材料工程, 2018, 46(2):34-40. XU T, FANG X Y, ZHU Y L, et al. Grain orientation and interface character distribution during austenite precipitation phase in duplex stainless steel[J]. Journal of Materials Engineering, 2018, 46(2): 34-40.
[13] MICHIUCHI M, KOKAWA H, WANG Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel [J]. Acta Materialia, 2006, 54(19): 5179-5184.
[14] 郭丽芳,李旭晏,孙涛,等. 敏化温度对SAF2304双相不锈钢耐局部腐蚀性能的影响[J]. 金属学报, 2012, 48(12): 1503-1509. GUO L F, LI X Y, SUN T, et al. The influence of sensitive temperature on the localized corrosion resistance of duplex stainless steel SAF2304[J]. Acta Metallurgica Sinica, 2012, 48(12): 1503-1509.
[15] 朱言利,许婷,秦聪祥,等. 双相不锈钢内界面特征分布和耐晶间腐蚀性能[J]. 机械工程材料, 2017, 41(8): 18-22. ZHU Y L, XU T, QIN C X, et al. Interfacial boundary character distribution and intergranular corrosion resistance of duplex stainless steel[J]. Materials for Mechanical Engineering, 2017, 41(8): 18-22.
[16] WATANABE T, TSUREKAWA S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering[J]. Acta Materialia, 1999, 47(15/16): 4171-4185.
[17] IKEUCHI K. Role of sigma phase on hydrogen embrittlement of super duplex stainless steels[J]. Transactions of JWRI, 2005, 34(2): 63-68.
[18] JIA N, PENG R L, CHAI G C. Direct experimental mapping of microscale deformation heterogeneity in duplex stainless steel[J]. Materials Science and Engineering:A, 2008, 491(1/2): 425-433.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[6] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[7] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[8] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[11] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[12] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[13] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[14] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[15] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn