Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (8): 103-109    DOI: 10.11868/j.issn.1001-4381.2018.001048
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
KH-SiO2/PES/BMI-F51复合材料的介电性能
陈宇飞1,2,*(), 耿成宝1, 郭红缘1, 岳春艳1, 柴铭茁1
1 哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
2 哈尔滨理工大学 工程电介质及应用技术教育部重点实验室, 哈尔滨 150080
Dielectric properties of KH-SiO2/PES/BMI-F51 composites
Yu-fei CHEN1,2,*(), Cheng-bao GENG1, Hong-yuan GUO1, Chun-yan YUE1, Ming-zhuo CHAI1
1 School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 Key Laboratory of Engineering Dielectrics and Its Application(Ministry of Education), Harbin University of Science and Technology, Harbin 150080, China
全文: PDF(2599 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用3-缩水甘油醚氧基丙基三甲氧基硅烷(KH-560)修饰纳米二氧化硅(nano-SiO2)获得改性纳米二氧化硅(KH-SiO2)。以酚醛环氧树脂(F51)和双马来酰亚胺(BMI)作为基体,添加4%(质量分数,下同)聚醚砜(PES)和不同含量(0.5%~2.5%)的KH-SiO2,制备KH-SiO2/PES/BMI-F51多相复合材料。红外光谱(FT-IR)、扫描电镜(SEM)和透射电镜结果表明:纳米SiO2表面修饰效果良好,纳米粒子团聚倾向减弱,粒径减小,比表面积增大。介电性能测试结果表明:随着KH-SiO2掺杂量的增加,材料的介电常数先降低后升高,介电损耗没有明显变化,体积电阻率和击穿强度先升高后降低。当KH-SiO2掺杂量为1.5%时,10Hz下介电常数和介电损耗角正切分别为4.55和0.0029,体积电阻率和击穿强度分别为1.74×1014Ω·m和29.11kV/mm,比树脂基体提高了68.9%和35.9%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇飞
耿成宝
郭红缘
岳春艳
柴铭茁
关键词 双马来酰亚胺酚醛环氧聚醚砜二氧化硅介电性能    
Abstract

KH-SiO2 was obtained by using 3-glycid-oxypropyl-trimethoxy-silane (KH-560) to modify nano-silica (nano-SiO2). KH-SiO2/PES/BMI-F51 multi-phase composite was prepared, the phenolic epoxy resin (F51) and bismaleimide (BMI) as the matrix, 4%(mass fraction, the same below) polyethe-rsulfone (PES) as toughening agent and different contents (0.5%-2.5%) of KH-SiO2 as modifier. The results of Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscope (TEM) show that the surface modification of nano-SiO2 is favourable, the agglomeration tendency of nanoparticles is weakened, the size is decreased and the specific surface area is increased. Dielectric properties test displays that the dielectric constant of the material is decreased first and then increased with the increase of doping amount of KH-SiO2. There is no significant change in dielectric loss tangent, and the volume resistivity and breakdown strength are increased first and then decreased. The dielectric constant and dielectric loss tangent of composite reach 4.55 and 0.0029 at 10Hz, respectively, when the doping amount of KH-SiO2 is 1.5%. The volume resistivity and breakdown strength are 1.74×1014Ω·m and 29.11kV/mm, respectively, which are 68.9% and 35.9% higher than that of resin matrix.

Key wordsbismaleimide    polyethersulfone    phenolic epoxy    silica    dielectric property
收稿日期: 2018-08-28      出版日期: 2019-08-22
中图分类号:  TB332  
基金资助:哈尔滨创新人才专项(2015RAXXJ029)
通讯作者: 陈宇飞     E-mail: chenyufei@hrbust.edu.cn
作者简介: 陈宇飞(1963-), 女, 教授, 博士, 主要从事聚合物基复合材料相关研究, 联系地址:黑龙江省哈尔滨市香坊区林园路4号哈尔滨理工大学材料科学与工程学院(150040), E-mail:chenyufei@hrbust.edu.cn
引用本文:   
陈宇飞, 耿成宝, 郭红缘, 岳春艳, 柴铭茁. KH-SiO2/PES/BMI-F51复合材料的介电性能[J]. 材料工程, 2019, 47(8): 103-109.
Yu-fei CHEN, Cheng-bao GENG, Hong-yuan GUO, Chun-yan YUE, Ming-zhuo CHAI. Dielectric properties of KH-SiO2/PES/BMI-F51 composites. Journal of Materials Engineering, 2019, 47(8): 103-109.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001048      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/103
Number Component Mass fraction/%
KH-SiO2 PES
A BMI-F51 0 0
B PES/BMI-F51 0 4
C1 KH-SiO2/PES/BMI-F51 0.5 4
C2 KH-SiO2/PES/BMI-F51 1.0 4
C3 KH-SiO2/PES/BMI-F51 1.5 4
C4 KH-SiO2/PES/BMI-F51 2.0 4
C5 KH-SiO2/PES/BMI-F51 2.5 4
Table 1  样品编号与组分
Fig.1  KH-SiO2的结构模拟图
Fig.2  Nano-SiO2和KH-SiO2的红外光谱
Fig.3  Nano-SiO2和KH-SiO2的SEM图
(a)nano-SiO2; (b)KH-SiO2
Fig.4  KH-SiO2的TEM图
Fig.5  复合材料的SEM图
(a)样品A; (b)样品B; (c),(d)样品C3
Fig.6  复合材料的介电常数
Fig.7  复合材料的介电损耗角正切
Fig.8  样品的体积电阻率和击穿强度
1 赵蕾, 李林洪, 李巧玲. 酚醛环氧树脂的改性研究进展[J]. 应用化工, 2016, 45 (10): 1950- 1953.
1 ZHAO L , LI L H , LI Q L . Progress in modification of novolac epoxy resin[J]. Applied Chemical Industry, 2016, 45 (10): 1950- 1953.
2 LEE D H , SUN K C , QADIR M B , et al. Optimized performance of quasi-solid-state DSSC with PEO-bismaleimide polymer blend electrolytes filled with a novel procedure[J]. Journal of Nanoscie-nce and Nanotechnology, 2014, 14 (12): 9377- 9382.
doi: 10.1166/jnn.2014.10131
3 ZHANG L Y , CHEN P , GAO M B , et al. Synthesis, character-ization, and curing kinetics of novel bismaleimide monomers cont-aining fluorene cardo group and aryl ether linkage[J]. Designed Monomers and Polymers, 2014, 17 (7): 637- 646.
doi: 10.1080/15685551.2014.907618
4 JAFARINASAB M , BARZIN J , MORTAHEB H R , et al. Structure and performance characterization of PDMS/PES-based pervaporation membranes for ethanol/water separation[J]. Iranian Polymer Journal, 2015, 24 (12): 989- 1002.
doi: 10.1007/s13726-015-0387-3
5 CHEN D Z , CHEN F X , ZHANG H W , et al. Preparation and characterization of novel addition cured polydimethylsiloxane nan-ocomposites using nano-silica sol as reinforcing filler[J]. Polymer International, 2015, 64 (12): 1741- 1746.
doi: 10.1002/pi.4974
6 DANG J , WANG R M , LOU R X , et al. Mechanical, thermal and dielectric properties of BDM/DBA/HBPSi composites[J]. Poly-mer Bulletin, 2014, 71 (4): 787- 794.
doi: 10.1007/s00289-014-1096-3
7 WU G L , CHENG Y H , WANG K K , et al. Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging[J]. Journal of Materials Science-Materials in Electronics, 2016, 27 (6): 5592- 5599.
doi: 10.1007/s10854-016-4464-y
8 WANG Y Q , KOU K C , ZHAO W , et al. The effect of functi-onalized benzoxazine with allyl groups on the dielectric, mechanical and thermal properties of BMI/BADCy composites[J]. RSC Advances, 2015, 5 (120): 99313- 99321.
doi: 10.1039/C5RA19541A
9 陈宇飞, 代起望, 滕成君, 等. 超临界氧化铝/聚醚砜-BMI-BBA-BBE复合材料的微观结构与耐热性[J]. 复合材料学报, 2015, 32 (3): 665- 672.
9 CHEN Y F , DAI Q W , TENG C J , et al. Microstructure and heat-resistance of SCE-Al2O3/PES-BMI-BBA-BBE composites[J]. Acta Materiae Compositae Sinica, 2015, 32 (3): 665- 672.
10 陈凯玲, 赵蕴慧, 袁晓燕. 二氧化硅粒子的表面化学修饰-方法、原理及应用[J]. 化学进展, 2013, 25 (1): 95- 104.
doi: 10.7536/PC120618
10 CHEN K L , ZHAO Y H , YUAN X Y . Chemical modification of silica:method, mechanism and application[J]. Progress in Chem-istry, 2013, 25 (1): 95- 104.
doi: 10.7536/PC120618
11 周鑫, 杨飞, 李传宪, 等. 无机纳米SiO2的表面改性研究[J]. 化工新型材料, 2015, 43 (2): 167- 170.
11 ZHOU X , YANG F , LI C X , et al. Study on surface modification of inorganic nano-SiO2 particles[J]. New Chemical Materials, 2015, 43 (2): 167- 170.
12 姚培, 李树白, 刘媛, 等. 改性纳米二氧化硅的制备及其对亚甲基蓝的吸附性能[J]. 化学研究与应用, 2018, 30 (2): 297- 302.
doi: 10.3969/j.issn.1004-1656.2018.02.022
12 YAO P , LI S B , LIU Y , et al. Preparation of modified nano silica and its adsorption performances for methylene blue[J]. Chemical Research and Application, 2018, 30 (2): 297- 302.
doi: 10.3969/j.issn.1004-1656.2018.02.022
13 曾少华, 申明霞, 段鹏鹏, 等. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45 (9): 38- 44.
13 ZENG S H , SHEN M X , DUAN P P , et al. Structure and property of carbon nanotubes attached glass fabric reinforced epoxy composites[J]. Journal of Materials Engineering, 2017, 45 (9): 38- 44.
14 张明艳, 隋珊, 陈金玉, 等. 功能化碳纳米管/环氧树脂复合材料性能研究[J]. 电工技术学报, 2014, 29 (4): 97- 102.
doi: 10.3969/j.issn.1000-6753.2014.04.013
14 ZHANG M Y , SUI S , CHEN J Y , et al. Study of properties of functional multi-walled carbon nanotubes/epoxy nanocomposites[J]. Transactions of China Electrotechnical Society, 2014, 29 (4): 97- 102.
doi: 10.3969/j.issn.1000-6753.2014.04.013
15 GUO Y , CHEN F H , HAN Y , et al. High performance fluorin-ated bismaleimide-triazine resin with excellent dielectric proper-ties[J]. Journal of Polymer Research, 2018, 25 (2): 27.
doi: 10.1007/s10965-017-1407-0
16 JIANG M L , ZOU X Q , HUANG Y M , et al. The effect of bism-aleimide on thermal, mechanical, and dielectric properties of allyl-functional bisphthalonitrile/bismaleimide system[J]. High Perform Polymers, 2017, 29 (9): 1016- 1026.
doi: 10.1177/0954008316667788
17 ZHANG Z Y , YUAN L , LIANG G Z , et al. Fabrication and origin of flame retarding glass fiber/bismaleimide resin composites with high thermal stability, good mechanical properties, and a low dielectric constant and loss for high frequency copper clad laminates[J]. RSC Advances, 2016, 6 (24): 19638- 19646.
doi: 10.1039/C6RA00067C
18 QIU J , WU Q Q , JIN L . Effect of hyperbranched polyethylen-eimine grafting functionalization of carbon nanotubes on mechanical, thermal stability and electrical properties of carbon nanotubes/bismaleimide composites[J]. RSC Advances, 2016, 6 (98): 96245- 96249.
doi: 10.1039/C6RA21545A
19 WANG X , JIANG Q , XU W Z , et al. Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites[J]. Carbon, 2013, 53, 145- 152.
doi: 10.1016/j.carbon.2012.10.041
20 刘晨阳, 郑晓泉, 别成亮, 等. 掺杂ZnO/环氧树脂基体的制备及其非线性电导改性研究[J]. 电工技术学报, 2016, 31 (12): 24- 30.
doi: 10.3969/j.issn.1000-6753.2016.12.003
20 LIU C Y , ZHENG X Q , BIE C L , et al. Research of preparation and non-linear conductivity modification of doped ZnO/epoxide resin material[J]. Transactions of China Electrotechnical Society, 2016, 31 (12): 24- 30.
doi: 10.3969/j.issn.1000-6753.2016.12.003
21 王旗, 李喆, 尹毅, 等. 微、纳米无机颗粒/环氧树脂复合材料击穿强度性能[J]. 电工技术学报, 2014, 29 (12): 230- 235.
doi: 10.3969/j.issn.1000-6753.2014.12.030
21 WANG Q , LI Z , YIN Y , et al. The effect of micro and nano inorganic filler on the breakdown strength of epoxy resin[J]. Transactions of China Electrotechnical Society, 2014, 29 (12): 230- 235.
doi: 10.3969/j.issn.1000-6753.2014.12.030
[1] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[2] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[3] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[4] 张孜文, 张康民, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 聚六亚甲基胍盐酸盐功能化中空纳米二氧化硅制备新型抗菌剂的研究[J]. 材料工程, 2020, 48(3): 40-46.
[5] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
[6] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[7] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[8] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[9] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[10] 邢星河, 曹峰, 彭志航, 曾祥雄. Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响[J]. 材料工程, 2018, 46(8): 36-42.
[11] 亢静锐, 董桂霞, 吕易楠, 李雷, 韩伟丹, 张茜. Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 材料工程, 2018, 46(8): 78-83.
[12] 王迎芬, 刘刚, 彭公秋, 李韶亮, 谢富原. 国产T700级碳纤维/双马来酰亚胺树脂复合材料界面性能[J]. 材料工程, 2018, 46(4): 140-145.
[13] 李闯, 李伟, 王明宇, 王柏臣, 冯博文, 李勃翰, 李强. 功能化氧化石墨烯改性双马树脂及其复合材料[J]. 材料工程, 2018, 46(12): 48-53.
[14] 黄连根, 郑玉婴. 树枝状介孔二氧化硅的制备及其负载纳米银的抗菌性[J]. 材料工程, 2018, 46(10): 135-141.
[15] 赵晓明, 刘元军. 铁氧体/碳化硅/石墨三层涂层复合材料介电性能[J]. 材料工程, 2017, 45(1): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn