Please wait a minute...
材料工程  2019, Vol. 47 Issue (5): 1-9    DOI: 10.11868/j.issn.1001-4381.2018.001064
  综述 本期目录 | 过刊浏览 | 高级检索 |
崔超婕1, 田佳瑞1, 杨周飞1, 金鹰2, 董卓娅1, 谢青1, 张刚2, 叶珍珍1, 王瑾1, 刘莎1, 骞伟中1
1. 清华大学 化学工程系, 北京 100084;
2. 江苏中天科技股份有限公司, 江苏 南通 226463
Application prospect of graphene in Li-ion battery and supercapacitor
CUI Chao-jie1, TIAN Jia-rui1, YANG Zhou-fei1, JIN Ying2, DONG Zhuo-ya1, XIE Qing1, ZHANG Gang2, YE Zhen-zhen1, WANG Jin1, LIU Sha1, QIAN Wei-zhong1
1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
2. Jiangsu Zhongtian Technology Co., Ltd., Nantong 226463, Jiangsu, China
全文: PDF(6498 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 由于独特的结构和优异的性质,石墨烯在锂离子电池和超级电容器领域展现出潜在的应用前景,受到了科学界和产业界的广泛关注,涌现出大量的研究工作。就石墨烯在储能领域的应用进行了分析、同时对未来发展趋势进行了预判,以期加强对石墨烯结构-性能关系的理解。首先就石墨烯在锂离子电池的正极和负极中的应用,以及石墨烯在双电层电容器和赝电容电容器中的应用进行了介绍,其次,针对石墨烯应用于双电层电容器中存在的挑战进行了论述,同时针对性地提出了应用于双电层电容器的石墨烯结构。最后,提出了实现石墨烯基双电层电容器的商业化应用的"三步走路线"。
E-mail Alert
关键词 石墨烯锂离子电池超级电容器双电层电容器能量转化与储存    
Abstract:Graphene, as a rising star in materials science, is intensively studied in Li-ion batteries and supercapacitors, owing to its unique structure and excellent properties. The research status of the application of graphene in energy storage field was disscussed and the future development trend was predicted, and therefore to enhance the understanding of the structure-performance relationship of graphene and also the application of graphene in this field. Firstly, the application of graphene in cathode and anode of Li-ion battery, and the application of graphene in electrical double-layer capacitor and pseudo-capacitor were introduced. Secondly, the challenges of graphene in electrical double-layer capacitor were discussed and the ideal structure of graphene applied to electrical double-layer capacitor was proposed. Finally, the "three steps" to realize the commercial application of graphene-based electrical double-layer capacitor were put forward.
Key wordsgraphene    Li-ion battery    supercapacitor    electrical double-layer capacitor    energy conversion and storage
收稿日期: 2018-09-06      出版日期: 2019-05-17
中图分类号:  TB332  
通讯作者: 骞伟中(1971-),男,教授,博士,研究方向为纳米碳材料、轻金属结构材料、能量转化与储存,联系地址:北京市清华大学化工系(100084),     E-mail:
崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
CUI Chao-jie, TIAN Jia-rui, YANG Zhou-fei, JIN Ying, DONG Zhuo-ya, XIE Qing, ZHANG Gang, YE Zhen-zhen, WANG Jin, LIU Sha, QIAN Wei-zhong. Application prospect of graphene in Li-ion battery and supercapacitor. Journal of Materials Engineering, 2019, 47(5): 1-9.
链接本文:      或
[1] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191.
[2] GEIM A K. Graphene:status and prospects[J]. Science,2009,324(5934):1530-1534.
[3] GEIM A K. Nobel lecture:random walk to graphene[J]. Rev Mod Phys, 2011, 83(3):851-862.
[4] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A road-map for graphene[J]. Nature, 2012, 490(7419):192-200.
[5] MAYOROV A S, GORBACHEV R V, MOROZOV S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 2011, 11(6):2396-2399.
[6] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1):016602.
[7] BALANDIN A A. Thermal properties of graphene and nanostruc-tured carbon materials[J]. Nature Materials, 2011, 10(8):569-581.
[8] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
[9] LIU F, MING P, LI J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Phys Rev B, 2007, 76(6):471-478.
[10] ZHANG Q, HUANG J Q, QIAN W Z, et al. The road for nanomaterials industry:a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small, 2013, 9(8):1237-1265.
[11] SUN X, LI J, SHI C, et al. Enhanced electrochemical performance of LiFePO4 cathode with in-situ chemical vapor deposition synthesized carbon nanotubes as conductor[J]. Jou-rnal of Power Sources, 2012, 220:264-268.
[12] LIU X Y, PENG H J, ZHANG Q, et al. Hierarchical carbon nanotube/carbon black scaffolds as short-and long-range elec-tron pathways with superior Li-ion storage performance[J]. ACS Sustainable Chemistry & Engineering, 2013, 2(2):200-206.
[13] LEE E, SALGADO R A, LEE B, et al. Design of lithium cobalt oxide electrodes with high thermal conductivity and electroch-emical performance using carbon nanotubes and diamond parti-cles[J]. Carbon, 2018, 129:702-710.
[14] NGUYEN T T D, DIMESSO L, CHERKASHININ G, et al. Synthesis and characterization of LiMn1-xFexPO4/carbon nanotubes composites as cathodes for Li-ion batteries[J]. Ion-ics, 2013, 19(9):1229-1240.
[15] GAO L, JIN Y, LIU X, et al. A rationally assembled graphene nanoribbon/graphene framework for high volumetric energy and power density Li-ion batteries[J]. Nanoscale, 2018, 10(16):7676-7684.
[16] WEI X, GUAN Y, ZHENG X, et al. Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent[J]. Applied Surface Science, 2018, 440:748-754.
[17] CAI H, HAN K, JIANG H, et al. Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries[J]. Journal of Physics and Chemistry of Solids, 2017, 109:9-17.
[18] NIU S, LV W, ZHANG C, et al. One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimension-ally interconnected structure for lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 295:182-189.
[19] WANG Q, YAN J, FAN Z. Carbon materials for high volum-etric performance supercapacitors:design, progress, challenges and opportunities[J]. Energy & Environmental Science, 2016, 9(3):729-762.
[20] ZHU C, HAN Y J, DUOSS E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communica-tions, 2015, 6:6962.
[21] TENG Y, ZHAO H, ZHANG Z, et al. MoS2 nanosheets verti-cally grown on graphene sheets for lithium-ion battery anodes[J]. ACS Nano, 2016, 10(9):8526-8535.
[22] SHI L, ZHAO T. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries[J]. Journal of Materials Chemistry A, 2017, 5(8):3735-3758.
[23] ZHANG X, CHENG X, ZHANG Q. Nanostructured energy materials for electrochemical energy conversion and storage:a review[J]. Journal of Energy Chemistry, 2016, 25(6):967-984.
[24] JI L, MEDURI P, AGUBRA V, et al. Graphene-based nanoco-mposites for energy storage[J]. Advanced Energy Materials, 2016, 6(16):1502159.
[25] SATHISH M, TOMAI T, HONMA I. Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage[J]. Journal of Power Sources, 2012, 217:85-91.
[26] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithiumion batteries[J]. Nature, 2000, 407(6803):496-499.
[27] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3):194-206.
[28] DENG D. Li-ion batteries:basics, progress, and challenges[J]. Energy Science & Engineering, 2015, 3(5):385-418.
[29] ZHANG L L, ZHAO X S. Carbon-based materials as superca-pacitor electrodes[J]. Chem Soc Rev, 2009, 38(9):2520-2531.
[30] FRACKOWIAK E, DELPEUX S, JUREWICZ K, et al. Enh-anced capacitance of carbon nanotubes through chemical activ-ation[J]. Chemical Physics Letters, 2002, 361(1/2):35-41.
[31] ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037):1537-1541.
[32] YU A, ROES I, DAVIES A, et al. Ultrathin, transparent, and flexible graphene films for supercapacitor application[J]. Applied Physics Letters, 2010, 96(25):253105-1-253105-3.
[33] ZHANG L, ZHANG F, YANG X, et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Sci Rep, 2013, 3:1408.
[34] DONG X C, XU H, WANG X W, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzym-eless glucose detection[J]. ACS Nano, 2012, 6(4):3206-3213.
[35] HE Y, CHEN W, LI X, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2013, 7(1):174-182.
[36] LEE J W, HALL A S, KIM J D, et al. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Cheminform, 2012, 43(24):1158-1164.
[37] ZHANG L L, ZHAO S, TIAN X N, et al. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes[J]. Langmuir, 2010, 26(22):17624-17628.
[38] REN W, CHENG H M. The global growth of graphene[J]. Nat Nanotechnol, 2014, 9(10):726-730.
[39] KAHNG Y H, LEE S, PARK W, et al. Thermal stability of multilayer graphene films synthesized by chemical vapor depos-ition and stained by metallic impurities[J]. Nanotechnology, 2012, 23(7):075702.
[40] LI Y, ZHOU W, WANG H, et al. An oxygen reduction elect-rocatalyst based on carbon nanotube-graphene complexes[J]. Nat Nanotechnol, 2012, 7(6):394-400.
[41] CHEN D, TANG L, LI J. Graphene-based materials in electro-chemistry[J]. Chem Soc Rev, 2010, 39(8):3157-3180.
[42] AMBROSI A, CHEE S Y, KHEZRI B, et al. Metallic impur-ities in graphenes prepared from graphite can dramatically infl-uence their properties[J]. Angew Chem Int Ed Engl, 2012, 51(2):500-503.
[43] LUO J, JANG H D, HUANG J. Effect of sheet morphology on the scalability of graphene-based ultracapacitors[J]. ACS Nano, 2013, 7(2):1464-1471.
[44] TAMAILARASAN P, RAMAPRABHU S. Carbon nanotubes-graphene-solidlike ionic liquid layer-based hybrid electrode material for high performance supercapacitor[J]. The Journal of Physical Chemistry C, 2012, 116(27):14179-14187.
[45] ZHAO M Q, ZHANG Q, HUANG J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nature Communications, 2014, 5:3410.
[46] DU F, YU D, DAI L, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capa-citance[J]. Chemistry of Materials, 2011, 23(21):4810-4816.
[47] YANG X, CHENG C, WANG Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 2013, 341(6145):534-537.
[48] GUO F, JIANG Y, XU Z, et al. Highly stretchable carbon aerogels[J]. Nat Commun, 2018, 9(1):881.
[49] SUN H, XU Z, GAO C. Multifunctional, ultra-flyweight, syn-ergistically assembled carbon aerogels[J]. Adv Mater, 2013, 25(18):2554-2560.
[50] CHEN H, QIAN W, XIE Q, et al. Graphene-carbon nanotube hybrids as robust, rapid, reversible adsorbents for organics[J]. Carbon, 2017, 116:409-414.
[51] LI H, TAO Y, ZHENG X, et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science, 2016, 9(10):3135-3142.
[52] TANG J, YUAN P, CAI C, et al. Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite poly-mer electrolyte for asymmetric capacitive energy storage[J]. Advanced Energy Materials, 2016:1600813-1-1600813-11.
[53] WANG Q, YAN J, DONG Z, et al. Densely stacked bubble-pillared graphene blocks for high volumetric performance supe-rcapacitors[J]. Energy Storage Materials, 2015, 1:42-50.
[54] CHEN H, XU H, WANG S, et al. Ultrafast all-climate alumi-num-graphene battery with quarter-million cycle life[J]. Science Advances, 2017, 3(12):7233.
[55] XU Y, LIN Z, ZHONG X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nat Commun, 2014, 5:4554.
[56] CUI C J, QIAN W Z, YU Y T, et al. Highly electroconductive mesoporous graphene nanofibers and their capacitance perfor-mance at 4V[J]. Journal of the American Chemical Society, 2014, 136(6):2256-2259.
[57] TIAN J, CUI C, ZHENG C, et al. Mesoporous tubular graph-ene electrode for high performance supercapacitor[J]. Chinese Chemical Letters, 2018, 29(4):599-602.
[1] 郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[2] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[3] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[4] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[5] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[6] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[7] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[8] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[11] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[12] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[13] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[14] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[15] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持